11. 修改主窗口风格
AppWizard生成的应用程序框架的主窗口具有缺省的窗口风格,比如在窗口标题条中自动添加文档名、窗口是叠加型的、可改变窗口大小等。要修改窗口的缺省风格,需要重载CWnd::PreCreateWindow(CREATESTRUCT& cs)函数,并在其中修改CREATESTRUCT型参数cs。
CWnd::PreCreateWindow 函数先于窗口创建函数执行。如果该函数被重载,则窗口创建函数将使用CWnd::PreCreateWindow 函数返回的CREATESTRUCT cs参数所定义的窗口风格来创建窗口;否则使用预定义的窗口风格。
CREATESTRUCT结构定义了创建函数创建窗口所用的初始参数,其定义如下:
typedef struct tagCREATESTRUCT {
LPVOID lpCreateParams; // 创建窗口的基本参数
HANDLE hInstance; // 拥有将创建的窗口的模块实例句柄
HMENU hMenu; // 新窗口的菜单句柄
HWND hwndParent; // 新窗口的父窗口句柄
int cy; // 新窗口的高度
int cx; // 新窗口的宽度
int y; // 新窗口的左上角Y坐标
int x; // 新窗口的左上角X坐标
LONG style; // 新窗口的风格
LPCSTR lpszName; // 新窗口的名称
LPCSTR lpszClass; // 新窗口的窗口类名
DWORD dwExStyle; // 新窗口的扩展参数
} CREATESTRUCT;
CREATESTRUCT结构的style域定义了窗口的风格。比如,缺省的MDI主窗口的风格中就包括FWS_ADDTOTITLE(在标题条中显示当前的工作文档名)、FWS_PREFIXTITLE(把文档名放在程序标题的前面)、WS_THICKFRAME(窗口具有可缩放的边框)等风格。由于多种风格参数由逻辑或(“|”)组合在一起的,因此添加某种风格,就只需用“|”把对应的参数加到CREATESTRUCT结构的style域中;删除已有的风格,则需用“&”连接CREATESTRUCT结构的style域与该风格的逻辑非值。
CREATESTRUCT结构的x、y、cx、cy域分别定义了窗口的初始位置和大小,因此,在CWnd::PreCreateWindow 函数中给它们赋值,将能定义窗口的初始显示位置和大小。
下例中的代码将主框窗口的大小将固定为1/4屏幕,标题条中仅显示窗口名,不显示文档名。
BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)
{
// TODO: Modify the Window class or styles here by modifying
// the CREATESTRUCT cs
// 修改主窗风格
cs.style &= ~FWS_ADDTOTITLE; //去除标题条中的文档名
cs.style &= ~WS_THICKFRAME; //去除可改变大小的边框
cs.style |= WS_DLGFRAME; //增加不能改变大小的边框
// 确定主窗的大小和初始位置
int cxScreen = ::GetSystemMetrics(SM_CXSCREEN);//获得屏幕宽
int cyScreen = ::GetSystemMetrics(SM_CYSCREEN); //获得屏幕高
cs.x = 0; // 主窗位于左上角
cs.y = 0;
cs.cx = cxScreen/2; // 主窗宽为1/2屏幕宽
cs.cy = cxScreen/2; // 主窗高为1/2屏幕高
return CMDIFrameWnd::PreCreateWindow(cs);
}
12. 控制滚动条
BOOL CDiagramShowView::PreTranslateMessage(MSG* pMsg)
{
"CFileTreeDoc* pDoc = (CFileTreeDoc*)GetDocument();
"CPoint point = GetScrollPosition();
"
"if(pMsg->message == WM_KEYDOWN)
"{
""switch(pMsg->wParam)
""{
""case VK_LEFT:
"""if( point.x > 10)
"""{
""""EndPoint.x = EndPoint.x - 10;
""""EndPoint.y = EndPoint.y;
"""}
"""else
"""{
""""EndPoint.x = 0;
""""EndPoint.y = EndPoint.y;
"""}
"""ScrollToPosition(EndPoint);
"""InvalidateRect(NULL,TRUE);
"""break;
""case VK_RIGHT:
"""if( point.x < pDoc->intDiagramColumnCount * pDoc->intColumnWidth - 10 )
"""{
""""EndPoint.x = EndPoint.x + 10;
""""EndPoint.y = EndPoint.y;
"""}
"""else
"""{
""""EndPoint.y = pDoc->intDiagramColumnCount * pDoc->intColumnWidth;
""""EndPoint.x = EndPoint.x;
"""}
"""ScrollToPosition(EndPoint);
"""InvalidateRect(NULL,TRUE);
"""break;
""case VK_UP:
"""if( point.y > 10)
"""{
""""EndPoint.y = EndPoint.y - 10;
""""EndPoint.x = EndPoint.x;
"""}
"""else
"""{
""""EndPoint.y = 0;
""""EndPoint.x = EndPoint.x;
"""}
"""ScrollToPosition(EndPoint);
"""InvalidateRect(NULL,TRUE);
"""break;
""case VK_DOWN:
"""if( point.y < pDoc->intDiagramRowCount * pDoc->intRowHeight - 10 )
"""{
""""EndPoint.y = EndPoint.y + 10;
""""EndPoint.x = EndPoint.x;
"""}
"""else
"""{
""""EndPoint.y = pDoc->intDiagramRowCount * pDoc->intRowHeight;
""""EndPoint.x = EndPoint.x;
"""}
"""ScrollToPosition(EndPoint);
"""InvalidateRect(NULL,TRUE);
"""break;
""default:
"""break;
""}
"}
"return FALSE;
}
// 通过正负号判断是向上还是向下滚动
if(zDelta==120)
向上滚动
if(zDelta==-120)
向下滚动
BOOL CDiagramShowView::OnMouseWheel(UINT nFlags, short zDelta, CPoint pt)
{
"CFileTreeDoc* pDoc = (CFileTreeDoc*)GetDocument();
"CPoint point = GetScrollPosition();
"
"if(zDelta==120)
"{
""if( point.y >= 20 )
""{
"""EndPoint.x = point.x;
"""EndPoint.y = point.y;
"""
"""EndPoint.x = EndPoint.x;
"""EndPoint.y = EndPoint.y - 20;
""}
""else
""{
"""EndPoint.x = EndPoint.x;
"""EndPoint.y = 0;
""}
"}
"
"if(zDelta==-120)
"{
""if( point.y <= pDoc->intDiagramRowCount * pDoc->intRowHeight - 20 )
""{
"""EndPoint.x = point.x;
"""EndPoint.y = point.y;
"""
"""EndPoint.x = EndPoint.x;
"""EndPoint.y = EndPoint.y + 20;
""}
""else
""{
"""EndPoint.x = EndPoint.x;
"""EndPoint.y = EndPoint.y;
""}
"}
"
"ScrollToPosition(EndPoint);
"InvalidateRect(NULL,TRUE);
"return CScrollView::OnMouseWheel(nFlags, zDelta, pt);
}
13. 属性页处理通知消息
CPropertyPageImpl有一个消息映射处理WM_NOTIFY。如果通知代码是PSN_*的值,OnNotify()就会调用相应的通知处理函数。这使用了编译阶段虚函数机制,从而使得派生类可以很容易的重载这些处理函数。
由于WTL 3和WTL 7设计的改变,从而存在两套不同的通知处理机制。在WTL 3中通知处理函数返回的值与PSN_*消息的返回值不同,例如,WTL 3是这样处理PSN_WIZFINISH的:
case PSN_WIZFINISH:
lResult = !pT->OnWizardFinish();
break;
OnWizardFinish()期望返回TRUE结束向导,FALSE阻止关闭向导。这个方法很简陋,但是IE5的通用控件对PSN_WIZFINISH处理的返回值添加了新解释,他返回需要获得焦点的窗口的句柄。WTL 3的程序将不能使用这个特性,因为它对所有非0的返回值都做相同的处理。
在WTL 7中,OnNotify() 没有改变 PSN_* 消息的返回值,处理函数返回任何文档中规定的合法数值和正确的行为。当然,为了向前兼容,WTL 3 仍然使用当前默认的工作方式,要使用WTL 7的消息处理方式,你必须在中including atldlgs.h一行之前添加一行定义:
#define _WTL_NEW_PAGE_NOTIFY_HANDLERS
编写新的代码没有理由不使用WTL 7的消息处理函数,所以这里就不介绍WTL 3的消息处理方式。
CPropertyPageImpl 为所有消息提供了默认的通知消息处理函数,你可以重载与你的程序有关的消息处理函数完成特殊的操作。默认的消息处理函数和相应的行为如下:
int OnSetActive() - 允许页面成为激活状态
BOOL OnKillActive() - 允许页面成为非激活状态
int OnApply() - 返回 PSNRET_NOERROR 表示应用操作成功完成
void OnReset() - 无相应的动作
BOOL OnQueryCancel() - 允许取消操作
int OnWizardBack() - 返回到前一个页面
int OnWizardNext() - 进行到下一个页面
INT_PTR OnWizardFinish() - 允许向导结束
void OnHelp() - 无相应的动作
BOOL OnGetObject(LPNMOBJECTNOTIFY lpObjectNotify) - 无相应的动作
int OnTranslateAccelerator(LPMSG lpMsg) - 返回 PSNRET_NOERROR 表示消息没有被处理
HWND OnQueryInitialFocus(HWND hWndFocus) - 返回 NULL 表示将按Tab Order顺序的第一个控件设为焦点状态
14.使工具条上的按钮点击一次为按下,再点击才弹起
bCheck=m_RtfEditToolBar.GetToolBarCtrl().IsButtonChecked(ID_TB_BOLD);
m_RtfEditToolBar.GetToolBarCtrl().CheckButton(ID_TB_BOLD, !bCheck);
15. VC中基于 Windows 的精确定时
在工业生产控制系统中,有许多需要定时完成的操作,如定时显示当前时间,定时刷新屏幕上的进度条,上位 机定时向下位机发送命令和传送数据等。特别是在对控制性能要求较高的实时控制系统和数据采集系统中,就更需要精确定时操作。
众所周知,Windows 是基于消息机制的系统,任何事件的执行都是通过发送和接收消息来完成的。 这样就带来了一些问题,如一旦计算机的CPU被某个进程占用,或系统资源紧张时,发送到消息队列 中的消息就暂时被挂起,得不到实时处理。因此,不能简单地通过Windows消息引发一个对定时要求 严格的事件。另外,由于在Windows中已经封装了计算机底层硬件的访问,所以,要想通过直接利用 访问硬件来完成精确定时,也比较困难。所以在实际应用时,应针对具体定时精度的要求,采取相适 应的定时方法。
VC中提供了很多关于时间操作的函数,利用它们控制程序能够精确地完成定时和计时操作。本文详细介绍了 VC中基于Windows的精确定时的七种方式.
方式一:VC中的WM_TIMER消息映射能进行简单的时间控制。首先调用函数SetTimer()设置定时 间隔,如SetTimer(0,200,NULL)即为设置200ms的时间间隔。然后在应用程序中增加定时响应函数 OnTimer(),并在该函数中添加响应的处理语句,用来完成到达定时时间的操作。这种定时方法非常 简单,可以实现一定的定时功能,但其定时功能如同Sleep()函数的延时功能一样,精度非常低,最小 计时精度仅为30ms,CPU占用低,且定时器消息在多任务操作系统中的优先级很低,不能得到及时响 应,往往不能满足实时控制环境下的应用。只可以用来实现诸如位图的动态显示等对定时精度要求不高的情况。如示例工程中的Timer1。
方式二:VC中使用sleep()函数实现延时,它的单位是ms,如延时2秒,用sleep(2000)。精度非常 低,最小计时精度仅为30ms,用sleep函数的不利处在于延时期间不能处理其他的消息,如果时间太 长,就好象死机一样,CPU占用率非常高,只能用于要求不高的延时程序中。如示例工程中的Timer2。
方式三:利用COleDateTime类和COleDateTimeSpan类结合WINDOWS的消息处理过程来实现秒级延时。如示例工程中的Timer3和Timer3_1。以下是实现2秒的延时代码:
COleDateTime start_time = COleDateTime::GetCurrentTime();
COleDateTimeSpan end_time= COleDateTime::GetCurrentTime()-start_time;
while(end_time.GetTotalSeconds()< 2) //实现延时2秒
{
MSG msg;
GetMessage(&msg,NULL,0,0);
TranslateMessage(&msg);
DispatchMessage(&msg);
//以上四行是实现在延时或定时期间能处理其他的消息,
//虽然这样可以降低CPU的占有率,
//但降低了延时或定时精度,实际应用中可以去掉。
end_time = COleDateTime::GetCurrentTime()-start_time;
}//这样在延时的时候我们也能够处理其他的消息。
方式四:在精度要求较高的情况下,VC中可以利用GetTickCount()函数,该函数的返回值是 DWORD型,表示以ms为单位的计算机启动后经历的时间间隔。精度比WM_TIMER消息映射高,在较 短的定时中其计时误差为15ms,在较长的定时中其计时误差较低,如果定时时间太长,就好象死机一样,CPU占用率非常高,只能用于要求不高的延时程序中。如示例工程中的Timer4和Timer4_1。下列代码可以实现50ms的精确定时:
DWORD dwStart = GetTickCount();
DWORD dwEnd = dwStart;
do
{
dwEnd = GetTickCount()-dwStart;
}while(dwEnd <50);
为使GetTickCount()函数在延时或定时期间能处理其他的消息,可以把代码改为:
DWORD dwStart = GetTickCount();
DWORD dwEnd = dwStart;
do
{
MSG msg;
GetMessage(&msg,NULL,0,0);
TranslateMessage(&msg);
DispatchMessage(&msg);
dwEnd = GetTickCount()-dwStart;
}while(dwEnd <50);
虽然这样可以降低CPU的占有率,并在延时或定时期间也能处理其他的消息,但降低了延时或定时精度。
方式五:与GetTickCount()函数类似的多媒体定时器函数DWORD timeGetTime(void),该函数定时精 度为ms级,返回从Windows启动开始经过的毫秒数。微软公司在其多媒体Windows中提供了精确定时器的底 层API持,利用多媒体定时器可以很精确地读出系统的当前时间,并且能在非常精确的时间间隔内完成一 个事件、函数或过程的调用。不同之处在于调用DWORD timeGetTime(void) 函数之前必须将 Winmm.lib 和 Mmsystem.h 添加到工程中,否则在编译时提示DWORD timeGetTime(void)函数未定义。由于使用该 函数是通过查询的方式进行定时控制的,所以,应该建立定时循环来进行定时事件的控制。如示例工程中的Timer5和Timer5_1。
方式六:使用多媒体定时器timeSetEvent()函数,该函数定时精度为ms级。利用该函数可以实现周期性的函数调用。如示例工程中的Timer6和Timer6_1。函数的原型如下:
MMRESULT timeSetEvent( UINT uDelay,
UINT uResolution,
LPTIMECALLBACK lpTimeProc,
WORD dwUser,
UINT fuEvent )
该函数设置一个定时回调事件,此事件可以是一个一次性事件或周期性事件。事件一旦被激活,便调用指定的回调函数, 成功后返回事件的标识符代码,否则返回NULL。函数的参数说明如下:
uDelay:以毫秒指定事件的周期。
Uresolution:以毫秒指定延时的精度,数值越小定时器事件分辨率越高。缺省值为1ms。
LpTimeProc:指向一个回调函数。
DwUser:存放用户提供的回调数据。
FuEvent:指定定时器事件类型:
TIME_ONESHOT:uDelay毫秒后只产生一次事件
TIME_PERIODIC :每隔uDelay毫秒周期性地产生事件。
具体应用时,可以通过调用timeSetEvent()函数,将需要周期性执行的任务定义在LpTimeProc回调函数 中(如:定时采样、控制等),从而完成所需处理的事件。需要注意的是,任务处理的时间不能大于周期间隔时间。另外,在定时器使用完毕后, 应及时调用timeKillEvent()将之释放。
方式七:对于精确度要求更高的定时操作,则应该使用QueryPerformanceFrequency()和 QueryPerformanceCounter()函数。这两个函数是VC提供的仅供Windows 95及其后续版本使用的精确时间函数,并要求计算机从硬件上支持精确定时器。如示例工程中的Timer7、Timer7_1、Timer7_2、Timer7_3。
QueryPerformanceFrequency()函数和QueryPerformanceCounter()函数的原型如下:
BOOL QueryPerformanceFrequency(LARGE_INTEGER *lpFrequency);
BOOL QueryPerformanceCounter(LARGE_INTEGER *lpCount);
数据类型ARGE_INTEGER既可以是一个8字节长的整型数,也可以是两个4字节长的整型数的联合结构, 其具体用法根据编译器是否支持64位而定。该类型的定义如下:
typedef union _LARGE_INTEGER
{
struct
{
DWORD LowPart ;// 4字节整型数
LONG HighPart;// 4字节整型数
};
LONGLONG QuadPart ;// 8字节整型数
}LARGE_INTEGER ;
在进行定时之前,先调用QueryPerformanceFrequency()函数获得机器内部定时器的时钟频率, 然后在需要严格定时的事件发生之前和发生之后分别调用QueryPerformanceCounter()函数,利用两次获得的计数之差及时钟频率,计算出事件经 历的精确时间。下列代码实现1ms的精确定时:
LARGE_INTEGER litmp;
LONGLONG QPart1,QPart2;
double dfMinus, dfFreq, dfTim;
QueryPerformanceFrequency(&litmp);
dfFreq = (double)litmp.QuadPart;// 获得计数器的时钟频率
QueryPerformanceCounter(&litmp);
QPart1 = litmp.QuadPart;// 获得初始值
do
{
QueryPerformanceCounter(&litmp);
QPart2 = litmp.QuadPart;//获得中止值
dfMinus = (double)(QPart2-QPart1);
dfTim = dfMinus / dfFreq;// 获得对应的时间值,单位为秒
}while(dfTim<0.001);
其定时误差不超过1微秒,精度与CPU等机器配置有关。 下面的程序用来测试函数Sleep(100)的精确持续时间:
LARGE_INTEGER litmp;
LONGLONG QPart1,QPart2;
double dfMinus, dfFreq, dfTim;
QueryPerformanceFrequency(&litmp);
dfFreq = (double)litmp.QuadPart;// 获得计数器的时钟频率
QueryPerformanceCounter(&litmp);
QPart1 = litmp.QuadPart;// 获得初始值
Sleep(100);
QueryPerformanceCounter(&litmp);
QPart2 = litmp.QuadPart;//获得中止值
dfMinus = (double)(QPart2-QPart1);
dfTim = dfMinus / dfFreq;// 获得对应的时间值,单位为秒
由于Sleep()函数自身的误差,上述程序每次执行的结果都会有微小误差。下列代码实现1微秒的精确定时:
LARGE_INTEGER litmp;
LONGLONG QPart1,QPart2;
double dfMinus, dfFreq, dfTim;
QueryPerformanceFrequency(&litmp);
dfFreq = (double)litmp.QuadPart;// 获得计数器的时钟频率
QueryPerformanceCounter(&litmp);
QPart1 = litmp.QuadPart;// 获得初始值
do
{
QueryPerformanceCounter(&litmp);
QPart2 = litmp.QuadPart;//获得中止值
dfMinus = (double)(QPart2-QPart1);
dfTim = dfMinus / dfFreq;// 获得对应的时间值,单位为秒
}while(dfTim<0.000001);
其定时误差一般不超过0.5微秒,精度与CPU等机器配置有关。