本节主要介绍Thread类和ThreadLocal机制的使用方法以及实现原理,以及对ThreadPool线程池支持的简单了解
在C++语言中,我们通过_beginThreadex或CreateThread来创建线程(最好使用前者,关于两者区别和线程基础知识可参见《Windows核心编程》),并且提供一个原型为void MyFunc(void pParam)入口函数来完成任务。在Poco中,将入口函数抽象为一个类Runnable,该类提供void run()接口,用户需要继承至该类来实现自定义的入口函数。Poco将线程也抽象为一个类Thread,提供了start, join等方法。
一个Thread使用例子如下:
#include "Poco/Thread.h"
#include "Poco/Runnable.h"
#include <iostream>
class HelloRunnable: public Poco::Runnable
{
virtual void run()
{
std::cout << "Hello, world!" << std::endl;
}
};
int main(int argc, char** argv)
{
HelloRunnable runnable;
Poco::Thread thread;
thread.start(runnable);//传入对象而不是对象指针
thread.join();
return 0;
}
定义一个Thread对象,调用其start方法并传入一个Runnable对象来启动线程,使用的方法比较简单,另外,如果你的线程的入口函数在另一个已定义好的类中,那么Poco提供了一个适配器来使线程能够从你指定的入口启动,并且无需修改已有的类:
#include "Poco/Thread.h"
#include "Poco/RunnableAdapter.h"
#include <iostream>
class Greeter
{
public:
void greet()
{
std::cout << "Hello, world!" << std::endl;
}
};
int main(int argc, char** argv)
{
Greeter greeter;
Poco::RunnableAdapter<Greeter> runnable(greeter, &Greeter::greet);
Poco::Thread thread;
thread.start(runnable);
thread.join();//等待该线程技术
return 0;
}
看完了其使用方法之后,我们来查看其内部实现。
先看看thread.start是怎么启动一个新线程的:
在Poco-1.4.6/Foundation/src/Thread_WIN32中找到start的实现startImpl:
void ThreadImpl::startImpl(Runnable& target)
{
if (isRunningImpl())
throw SystemException("thread already running");
_pRunnableTarget = ⌖ //记录入口
createImpl(runnableEntry, this);
}
该函数先判断线程是否正在运行,然后将Runnable对象指针存入成员_pRunnableTarget中,之后调用createImpl函数,并传入runnableEntry函数地址和this指针
void ThreadImpl::createImpl(Entry ent, void* pData)
{
#if defined(_DLL)
_thread = CreateThread(NULL, _stackSize, ent, pData, 0, &_threadId);
#else
unsigned threadId;
_thread = (HANDLE) _beginthreadex(NULL, _stackSize, ent, this, 0, &threadId);
_threadId = static_cast<DWORD>(threadId);
#endif
if (!_thread)
throw SystemException("cannot create thread");
if (_prio != PRIO_NORMAL_IMPL && !SetThreadPriority(_thread, _prio))
throw SystemException("cannot set thread priority");
}
其中Entry ent参数也就是runnableEntry函数代码如下:
#if defined(_DLL)
DWORD WINAPI ThreadImpl::runnableEntry(LPVOID pThread)
#else
unsigned __stdcall ThreadImpl::runnableEntry(void* pThread)
#endif
{
_currentThreadHolder.set(reinterpret_cast<ThreadImpl*>(pThread));
#if defined(_DEBUG) && defined(POCO_WIN32_DEBUGGER_THREAD_NAMES)
setThreadName(-1, reinterpret_cast<Thread*>(pThread)->getName().c_str());
#endif
try
{
reinterpret_cast<ThreadImpl*>(pThread)->_pRunnableTarget->run();
}
catch (Exception& exc)
{
ErrorHandler::handle(exc);
}
catch (std::exception& exc)
{
ErrorHandler::handle(exc);
}
catch (...)
{
ErrorHandler::handle();
}
return 0;
}
可以看出,createImpl负责创建线程,并且把入口函数runnableEntry作为线程入口,将this指针作为参数。在runnableEntry中,首先将pThread也就是代表该线程的Threal对象地址放入_currentThreadHolder中,static CurrentThreadHolder _currentThreadHolder;是一个静态数据成员,它的存在是为了方便程序在任何环境下通过Thread::current来获取当前运行线程所属的Thread对象指针。CurrentThreadHolder是ThreadImpl的一个内嵌类,它通过线程的TLS机制将线程的Thread指针放入TLS数组的某个槽中(_slot),并提供存取(set)和获取(get)方法,源码如下:
class CurrentThreadHolder
{
public:
CurrentThreadHolder(): _slot(TlsAlloc())
{
if (_slot == TLS_OUT_OF_INDEXES)
throw SystemException("cannot allocate thread context key");
}
~CurrentThreadHolder()
{
TlsFree(_slot);
}
ThreadImpl* get() const
{
return reinterpret_cast<ThreadImpl*>(TlsGetValue(_slot));
}
void set(ThreadImpl* pThread)
{
TlsSetValue(_slot, pThread);
}
private:
DWORD _slot;
};
runnableEntry在通过_currentThreadHolder存取了Thread指针之后,便开始调用用户在Runnable类中定义的run函数。
ThreadImpl类还提供了一系列线程相关的方法:
void ThreadImpl::joinImpl()
{
if (!_thread) return;
switch (WaitForSingleObject(_thread, INFINITE))
{
case WAIT_OBJECT_0:
threadCleanup();
return;
default:
throw SystemException("cannot join thread");
}
}
bool ThreadImpl::joinImpl(long milliseconds)
{
if (!_thread) return true;
switch (WaitForSingleObject(_thread, milliseconds + 1))
{
case WAIT_TIMEOUT:
return false;
case WAIT_OBJECT_0:
threadCleanup();
return true;
default:
throw SystemException("cannot join thread");
}
}
bool ThreadImpl::isRunningImpl() const
{
if (_thread)
{
DWORD ec = 0;
return GetExitCodeThread(_thread, &ec) && ec == STILL_ACTIVE;
}
return false;
}
void ThreadImpl::threadCleanup()
{
if (!_thread) return;
if (CloseHandle(_thread)) _thread = 0;
}
ThreadImpl* ThreadImpl::currentImpl()
{
return _currentThreadHolder.get();
}
ThreadImpl::TIDImpl ThreadImpl::currentTidImpl()
{
return GetCurrentThreadId();
}
下面我们再看看RunnableAdapter是如何运用适配器模式的,在Poco-1.4.6/Foundation/Include/RunnableAdaper.h中找到RunnableAdaper类的实现:
template <class C>
class RunnableAdapter: public Runnable
/// This adapter simplifies using ordinary methods as
/// targets for threads.
/// Usage:
/// RunnableAdapter<MyClass> ra(myObject, &MyObject::doSomething));
/// Thread thr;
/// thr.Start(ra);
///
/// For using a freestanding or static member function as a thread
/// target, please see the ThreadTarget class.
{
public:
typedef void (C::*Callback)();
RunnableAdapter(C& object, Callback method): _pObject(&object), _method(method)
{
}
RunnableAdapter(const RunnableAdapter& ra): _pObject(ra._pObject), _method(ra._method)
{
}
~RunnableAdapter()
{
}
RunnableAdapter& operator = (const RunnableAdapter& ra)
{
_pObject = ra._pObject;
_method = ra._method;
return *this;
}
void run()
{
(_pObject->*_method)();
}
private:
RunnableAdapter();
C* _pObject;
Callback _method;
};
可以看出,这里是一个经典的对象适配器模式的运用,关于适配器模式可见参考文章:http://www.cnblogs.com/houleixx/archive/2008/03/04/1090214.html
Thread::start除了接收Runnable对象之外,还可以传入函数和参数,向_beginThreadex和CreateThread那样,start原型如下:
typedef void (*Callable)(void*);
void start(Callable target, void* pData = 0);
使用范例:
#include <iostream>
#include "Poco/Thread.h"
#include "Poco/ThreadLocal.h"
#include "Poco/Runnable.h"
using namespace std;
using namespace Poco;
void sayHello(void* name)
{
cout<<"Hello "<<(char*)name<<endl;
}
void main()
{
static char* name = "DJWu";
Thread thr;
thr.start(sayHello, name);
thr.join();
return ;
}
现在我们来看看这种情况下Thread::start是如何工作的:
在Foundation/src/Thread_WIN32.cpp中找到startImpl的另一个重载源码:
void ThreadImpl::startImpl(Callable target, void* pData)
{
if (isRunningImpl())
throw SystemException("thread already running");
threadCleanup();
_callbackTarget.callback = target;
_callbackTarget.pData = pData;
createImpl(callableEntry, this);
}
startImpl将用户定义的参数和入口函数放入一个成员结构体_callbackTarget中,然后调用createImpl,由于这里传入的callableEntry和前面Runnable版本的startImpl传入的runnableEntry函数原型是一致的(定义在Foundation/Include/Thread_WIN32.h中):
#if defined(_DLL)
static DWORD WINAPI runnableEntry(LPVOID pThread);
#else
static unsigned __stdcall runnableEntry(void* pThread);
#endif
#if defined(_DLL)
static DWORD WINAPI callableEntry(LPVOID pThread);
#else
static unsigned __stdcall callableEntry(void* pThread);
#endif
它们的原型与Entry一致:
#if defined(_DLL)
typedef DWORD (WINAPI *Entry)(LPVOID);
#else
typedef unsigned (__stdcall *Entry)(void*);
#endif
因此它们调用的是同一个createImpl(createImpl也没有重载),这里再次将createImpl贴出来:
void ThreadImpl::createImpl(Entry ent, void* pData)
{
#if defined(_DLL)
_thread = CreateThread(NULL, _stackSize, ent, pData, 0, &_threadId);
#else
unsigned threadId;
_thread = (HANDLE) _beginthreadex(NULL, _stackSize, ent, this, 0, &threadId);
_threadId = static_cast<DWORD>(threadId);
#endif
if (!_thread)
throw SystemException("cannot create thread");
if (_prio != PRIO_NORMAL_IMPL && !SetThreadPriority(_thread, _prio))
throw SystemException("cannot set thread priority");
}
此时线程的真正入口callableEntry如下:
#if defined(_DLL)
DWORD WINAPI ThreadImpl::callableEntry(LPVOID pThread)
#else
unsigned __stdcall ThreadImpl::callableEntry(void* pThread)
#endif
{
_currentThreadHolder.set(reinterpret_cast<ThreadImpl*>(pThread));
#if defined(_DEBUG) && defined(POCO_WIN32_DEBUGGER_THREAD_NAMES)
setThreadName(-1, reinterpret_cast<Thread*>(pThread)->getName().c_str());
#endif
try
{
ThreadImpl* pTI = reinterpret_cast<ThreadImpl*>(pThread);
pTI->_callbackTarget.callback(pTI->_callbackTarget.pData);
}
catch (Exception& exc)
{
ErrorHandler::handle(exc);
}
catch (std::exception& exc)
{
ErrorHandler::handle(exc);
}
catch (...)
{
ErrorHandler::handle();
}
return 0;
}
这里面和runnableEntry做相似的工作:先保存该线程对应的Thread对象指针,再调用用户指定的入口,前面用用户指定的对象调用run函数,这里用_callbackTarget中的函数地址和参数启动函数。
综合这两种启动线程的方式,它们的入口并不直接是用户指定的入口,而是runnableEntry或者callbackEntry,它们做了一些额外工作:
1.保存当前线程对应的Thread对象指针(通过TLS机制)
2.如果是在调试状态,则可以给线程设置名字(可通过Thread::setName指定)
3.为线程运行设置异常帧
ThreadLocal类为开发者提供了更为简洁的TLS机制使用方法,TLS机制用来保存这样一些变量:它们在不同的线程里有不同的值,并且各自维护,线程不能访问其他线程中的这些变量。
关于TLS机制可参见《Windows核心编程》和这篇文章:http://www.cnblogs.com/stli/archive/2010/11/03/1867852.html
ThreadLocal使用方法:
#include "Poco/Thread.h"
#include "Poco/Runnable.h"
#include "Poco/ThreadLocal.h"
#include <iostream>
class Counter: public Poco::Runnable
{
void run()
{
static Poco::ThreadLocal<int> tls;
for (*tls = 0; *tls < 10; ++(*tls))
{
std::cout << *tls << std::endl;
}
}
};
int main(int argc, char** argv)
{
Counter counter;
Poco::Thread t1;
Poco::Thread t2;
t1.start(counter);//这两句官方文档上有错,文档上是t1.start(); t2.start();
t2.start(counter);
t1.join();
t2.join();
return 0;
}
使用ThreadLocal模板类可以保存任何变量(只需提供默认构造函数),并且通过*和->来进行很方便的存取。使用方法一目了然,避开了相对繁琐的TlsAlloc,TlsSetValue,TlsGetValue,其实ThreadLocal内部也并没有使用线程的TLS机制。来看看其内部实现。在Foundation/Include/Poco/ThreadLocal.h和Foundation/src/ThreadLocal.cpp中,我们找到四个相关类,为了解释方便,我将ThreadLocal.cpp中比较重要的函数实现一起放在了ThreadLocal.h中:
class Foundation_API TLSAbstractSlot //该类用于抽象TLSSlot模板类,并没有实际接口
/// This is the base class for all objects
/// that the ThreadLocalStorage class manages.
{
public:
TLSAbstractSlot();
virtual ~TLSAbstractSlot();
};
template <class C>
class TLSSlot: public TLSAbstractSlot //该类实际代表了对ThreadLocal对象所保存的值(模板参数也由ThreadLocal提供) 并且给出了值的存取过程(注意value()函数返回的是引用)
/// The Slot template wraps another class
/// so that it can be stored in a ThreadLocalStorage
/// object. This class is used internally, and you
/// must not create instances of it yourself.
{
public:
TLSSlot():_value(){}
~TLSSlot(){}
C& value(){return _value;}
private:
TLSSlot(const TLSSlot&);
TLSSlot& operator = (const TLSSlot&);
C _value;
};
class Foundation_API ThreadLocalStorage
//该类维系一个map<ThreadLocal<C>*, TLSSlot<C>*>这是实现ThreadLocal的关键
//ThreadLocal类通过传入this指针来获取自身所代表的值(一个ThreadLocal对象对应代表一个值)
/// This class manages the local storage for each thread.
/// Never use this class directly, always use the
/// ThreadLocal template for managing thread local storage.
{
public:
ThreadLocalStorage(){}
/// Creates the TLS.
~ThreadLocalStorage()
/// Deletes the TLS.
{
for (TLSMap::iterator it = _map.begin(); it != _map.end(); ++it)
{
delete it->second;
}
}
TLSAbstractSlot*& get(const void* key)
//通过传入的ThreadLocal<C>*指针在_map中查找对应的TLSSlot<C>指针,注意在ThreadLocal对象定义时
//并不会立即将ThreadLocal对象和一个TLSSlot关联起来,而是在第一次对其使用*或者->获取其值时,
//也就是第一次调用本函数时,如果在_map中没有找到其对应值,才将ThreadLocal指针和一个NULL指针插入_map
//然后返回NULL。由于返回的指针引用,因此在之外对返回值作的修改也会修改_map中的值
/// Returns the slot for the given key.
{
TLSMap::iterator it = _map.find(key);
if (it == _map.end())//没找到 插入并返回空指针
return _map.insert(TLSMap::value_type(key, reinterpret_cast<Poco::TLSAbstractSlot*>(0))).first->second;
else
return it->second;
}
static ThreadLocalStorage& current()
/// Returns the TLS object for the current thread
/// (which may also be the main thread).
{
Thread* pThread = Thread::current();
if (pThread)
{
return pThread->tls();
//附Thread::tls()代码:
//ThreadLocalStorage& Thread::tls()
//{
// if (!_pTLS)
// _pTLS = new ThreadLocalStorage;
// return *_pTLS;
//}
}
else
{
return *sh.get();
//static SingletonHolder<ThreadLocalStorage> sh;是一个全局静态变量
//SingletonHolder是一个单例模式容器 如果pThread为NULL,则说明当前线程是主线程
//sh是为主线程准备的ThreadLocalStorage
}
}
static void clear()
/// Clears the current thread's TLS object.
/// Does nothing in the main thread.
{
Thread* pThread = Thread::current();
if (pThread)
pThread->clearTLS();
//附Thread::clearTls()代码:
//void Thread::clearTLS()
//{
// if (_pTLS)
// {
// delete _pTLS;
// _pTLS = 0;
// }
//}
}
private:
typedef std::map<const void*, TLSAbstractSlot*> TLSMap;
TLSMap _map;
friend class Thread;
};
template <class C>
class ThreadLocal //ThreadLocal完成对自身所代表的值的一层封装 值的获取在ThreadLocalStorage中完成
/// This template is used to declare type safe thread
/// local variables. It can basically be used like
/// a smart pointer class with the special feature
/// that it references a different object
/// in every thread. The underlying object will
/// be created when it is referenced for the first
/// time.
/// See the NestedDiagnosticContext class for an
/// example how to use this template.
/// Every thread only has access to its own
/// thread local data. There is no way for a thread
/// to access another thread's local data.
{
typedef TLSSlot<C> Slot;
public:
ThreadLocal()
{
}
~ThreadLocal()
{
}
C* operator -> ()
{
return &get();
}
C& operator * ()
/// "Dereferences" the smart pointer and returns a reference
/// to the underlying data object. The reference can be used
/// to modify the object.
{
return get();
}
C& get()
/// Returns a reference to the underlying data object.
/// The reference can be used to modify the object.
{
//在当前线程的ThreadLocalStorage类中通过this指针在map中查找其代表的值
//注意ThreadLocalStorage::get(this)返回的是TLSSlot<C>*指针的引用
//因此对返回指针引用p的修改会直接影响到ThreadLocalStorage::_map中的值
TLSAbstractSlot*& p = ThreadLocalStorage::current().get(this);
if (!p) p = new Slot;
return static_cast<Slot*>(p)->value();
}
private:
ThreadLocal(const ThreadLocal&);
ThreadLocal& operator = (const ThreadLocal&);
};
看起来这四个类以及Thread类之间的交互有些麻烦,但是实际这主要是为了明确各个类的职责:
对于Thread类,它维护一个ThreadLocalStorage* _pTLS指针,负责它本身的TLS类的分配(tls())和释放(clearTls())
对于ThreadLocalStorage类 它是整个Thread TLS机制的核心,它从友元类Thread获取当前运行线程的_pTLS指针,并且在该ThreadLocalStorage里寻找传入的ThreadLocal指针所代表的值,如果找不到,则插入一个pair,将该second设为NULL, 并且返回TLSAbstractSlot*指针的引用。
对于TLSAbstractSlot类,它的主要功能就是抽象TLSSlot<C>模板类,这样ThreadLocalStorage可以返回统一接口,而不用再成为模板类(如果这样,那么Thread类维护_pTLS也会比较困难,因为模板类实例化需要提供模板参数)。
TLSSlot类代表ThreadLocal代表的值,并负责该值的读取(只有value()方法而没有setValue()方法),注意在使用ThreadLocal时,需要先声明再赋值,而不是直接初始化,因为如果ThreadLocal<int> a = 3; a实际上是ThreadLocal对象,而不是int的引用。正确使用应该是ThreadLocal<int> a; *a = 3;这也是之前说使用ThreadLocal作为TLS值的类要求必须要有默认构造函数的原因。
还有注意的是,在整个类之间的传递过程中,基本都是返回的指针引用,这样才能一处修改,影响到其他组件的同步修改。
Poco的ThreadLocal机制并没有使用线程的TLS机制,而是将TLS数据放在了Thread类中(确切说是其维护的_pTLS指针中,对于主线程,其并没有对应Thread类,因此为其定制了一个全局静态单例的ThreadLocalStorage对象)。
POCO为我们提供了线程池的接口,关于线程池的优缺点和适用情形这里不再讨论,网上也有很多各式的线程池实现,POCO的线程池自然是基于前面介绍的多线程结构的。
简单地说,POCO线程池主要有两个类,PooledThread和ThreadPool,前者是线程池中的线程,负责执行线程池分配下来的任务,它基于Thread和Runnable机制。后者是线程池类,它负责对线程池中的各个线程进行维护(创建,分配,回收,清除等)。
先看看PooledThread的主要接口:
文件位置:poco-1.4.6/Foundation/src/ThreadPool.cpp
class PooledThread: public Runnable
{
public:
PooledThread(const std::string& name, int stackSize = POCO_THREAD_STACK_SIZE);
~PooledThread();
void start();//线程处于就绪(空闲)状态,当入口被设定后(通过下面两个start),即可开始任务(由_targetReady信号量控制)。
void start(Thread::Priority priority, Runnable& target);//为线程设定优先级和入口
void start(Thread::Priority priority, Runnable& target, const std::string& name);//为线程设定优先级,入口和名字
bool idle();//返回是否是空闲线程
int idleTime();//空闲时间
void join();//等待结束
void activate();//激活线程 将线程由就绪(空闲)改为忙碌(_idle=false)
void release();//销毁自身
void run();//自定义入口 在start()中调用 它等待_targetReady信号量 并执行真正的线程入口_pTarget->run();
private:
volatile bool _idle;//线程是否空闲
volatile std::time_t _idleTime;//线程本次空闲开始时刻
Runnable* _pTarget;//线程入口
std::string _name;//线程名字(可选)
Thread _thread;//线程对象
Event _targetReady;//任务是否准备好 即_pTarget是否有效
Event _targetCompleted;//任务是否执行完毕 即_pTarget->run()是否执行完成
Event _started;//线程是否已经开始
FastMutex _mutex;//提供对_pTarget的互斥访问
};
下面是PooledThread的一些主要函数实现:
void PooledThread::start()
{
_thread.start(*this);
_started.wait();
}
void PooledThread::start(Thread::Priority priority, Runnable& target)
{
FastMutex::ScopedLock lock(_mutex);
poco_assert (_pTarget == 0);
_pTarget = ⌖
_thread.setPriority(priority);
_targetReady.set();
}
void PooledThread::start(Thread::Priority priority, Runnable& target, const std::string& name)
{
FastMutex::ScopedLock lock(_mutex);
std::string fullName(name);
if (name.empty())
{
fullName = _name;
}
else
{
fullName.append(" (");
fullName.append(_name);
fullName.append(")");
}
_thread.setName(fullName);
_thread.setPriority(priority);
poco_assert (_pTarget == 0);
_pTarget = ⌖
_targetReady.set();
}
inline bool PooledThread::idle()
{
return _idle;
}
int PooledThread::idleTime()
{
FastMutex::ScopedLock lock(_mutex);
#if defined(_WIN32_WCE)
return (int) (wceex_time(NULL) - _idleTime);
#else
return (int) (time(NULL) - _idleTime);
#endif
}
void PooledThread::join()
{
_mutex.lock();
Runnable* pTarget = _pTarget;
_mutex.unlock();
if (pTarget)
_targetCompleted.wait();//等待本次任务结束
}
void PooledThread::activate()
{
FastMutex::ScopedLock lock(_mutex);
poco_assert (_idle);
_idle = false;//忙碌状态
_targetCompleted.reset();//_targetCompeleted信号量无效 等待任务分配
}
void PooledThread::release()
{
const long JOIN_TIMEOUT = 10000;
_mutex.lock();
_pTarget = 0;
_mutex.unlock();
_targetReady.set();//_targetReady信号量有效 而_pTarget=0; 此时在pooledThread:run()中将跳出无线循环 结束自身
if (_thread.tryJoin(JOIN_TIMEOUT))
{
delete this;
}
}
void PooledThread::run()
{
_started.set();
for (;;)//不断等待并执行分配的任务 通过_targetReady判断是否有新的任务
{
_targetReady.wait();
_mutex.lock();
if (_pTarget) //当_pTarget=0;将跳出无限循环 即结束自身
{
_mutex.unlock();
try
{
_pTarget->run();
}
catch (Exception& exc)
{
ErrorHandler::handle(exc);
}
catch (std::exception& exc)
{
ErrorHandler::handle(exc);
}
catch (...)
{
ErrorHandler::handle();
}
FastMutex::ScopedLock lock(_mutex);
_pTarget = 0;
#if defined(_WIN32_WCE)
_idleTime = wceex_time(NULL);
#else
_idleTime = time(NULL);
#endif
_idle = true;//执行完成后,重新设为空闲状态
_targetCompleted.set();
ThreadLocalStorage::clear();
_thread.setName(_name);
_thread.setPriority(Thread::PRIO_NORMAL);
}
else
{
_mutex.unlock();
break;
}
}
}
PooledThread通过维护一个Thread对象和一些信号量控制来完成对Thread对象的复用,PooledThread类从Runnable派生,这样就可以通过定义run()方法来反复执行任务,而实际上每次执行的任务是定义在成员Runnable* _pTarget中。
而ThreadPool就更为简单了,它负责任务的分配,线程的管理。接口如下:
文件位置:poco-1.4.6/Foundation/Include/poco/ThreadPool.h
class Foundation_API ThreadPool
/// A thread pool always keeps a number of threads running, ready
/// to accept work.
/// Creating and starting a threads can impose a significant runtime
/// overhead to an application. A thread pool helps to improve
/// the performance of an application by reducing the number
/// of threads that have to be created (and destroyed again).
/// Threads in a thread pool are re-used once they become
/// available again.
/// The thread pool always keeps a minimum number of threads
/// running. If the demans for threads increases, additional
/// threads are created. Once the demand for threads sinks
/// again, no-longer used threads are stopped and removed
/// from the pool.
{
public:
ThreadPool(int minCapacity = 2,
int maxCapacity = 16,
int idleTime = 60,
int stackSize = POCO_THREAD_STACK_SIZE);
/// Creates a thread pool with minCapacity threads.
/// If required, up to maxCapacity threads are created
/// a NoThreadAvailableException exception is thrown.
/// If a thread is running idle for more than idleTime seconds,
/// and more than minCapacity threads are running, the thread
/// is killed. Threads are created with given stack size.
ThreadPool(const std::string& name,
int minCapacity = 2,
int maxCapacity = 16,
int idleTime = 60,
int stackSize = POCO_THREAD_STACK_SIZE);
/// Creates a thread pool with the given name and minCapacity threads.
/// If required, up to maxCapacity threads are created
/// a NoThreadAvailableException exception is thrown.
/// If a thread is running idle for more than idleTime seconds,
/// and more than minCapacity threads are running, the thread
/// is killed. Threads are created with given stack size.
~ThreadPool();
/// Currently running threads will remain active
/// until they complete.
void addCapacity(int n);
/// Increases (or decreases, if n is negative)
/// the maximum number of threads.
int capacity() const;
/// Returns the maximum capacity of threads.
void setStackSize(int stackSize);
/// Sets the stack size for threads.
/// New stack size applies only for newly created threads.
int getStackSize() const;
/// Returns the stack size used to create new threads.
int used() const;
/// Returns the number of currently used threads.
int allocated() const;
/// Returns the number of currently allocated threads.
int available() const;
/// Returns the number available threads.
void start(Runnable& target);
/// Obtains a thread and starts the target.
/// Throws a NoThreadAvailableException if no more
/// threads are available.
void start(Runnable& target, const std::string& name);
/// Obtains a thread and starts the target.
/// Assigns the given name to the thread.
/// Throws a NoThreadAvailableException if no more
/// threads are available.
void startWithPriority(Thread::Priority priority, Runnable& target);
/// Obtains a thread, adjusts the thread's priority, and starts the target.
/// Throws a NoThreadAvailableException if no more
/// threads are available.
void startWithPriority(Thread::Priority priority, Runnable& target, const std::string& name);
/// Obtains a thread, adjusts the thread's priority, and starts the target.
/// Assigns the given name to the thread.
/// Throws a NoThreadAvailableException if no more
/// threads are available.
void stopAll();
/// Stops all running threads and waits for their completion.
///
/// Will also delete all thread objects.
/// If used, this method should be the last action before
/// the thread pool is deleted.
///
/// Note: If a thread fails to stop within 10 seconds
/// (due to a programming error, for example), the
/// underlying thread object will not be deleted and
/// this method will return anyway. This allows for a
/// more or less graceful shutdown in case of a misbehaving
/// thread.
void joinAll();
/// Waits for all threads to complete.
///
/// Note that this will not actually join() the underlying
/// thread, but rather wait for the thread's runnables
/// to finish.
void collect();
/// Stops and removes no longer used threads from the
/// thread pool. Can be called at various times in an
/// application's life time to help the thread pool
/// manage its threads. Calling this method is optional,
/// as the thread pool is also implicitly managed in
/// calls to start(), addCapacity() and joinAll().
const std::string& name() const;
/// Returns the name of the thread pool,
/// or an empty string if no name has been
/// specified in the constructor.
static ThreadPool& defaultPool();
/// Returns a reference to the default
/// thread pool.
protected:
PooledThread* getThread();//获取线程池中的一个空闲线程
PooledThread* createThread();//创建线程
void housekeep();//清理线程,移除多余的线程
private:
ThreadPool(const ThreadPool& pool);
ThreadPool& operator = (const ThreadPool& pool);
typedef std::vector<PooledThread*> ThreadVec;
std::string _name; //线程池名字
int _minCapacity; //线程池最小线程容量
int _maxCapacity; //线程池最大线程容量
int _idleTime; //线程空闲时间(线程池中空闲时间超过_idleTime的线程可能被移除线程池)
int _serial;
int _age;
int _stackSize; //线程池中线程的栈大小
ThreadVec _threads;//线程对象数组
mutable FastMutex _mutex;
};
在有新的任务分配时,ThreadPool通过getThread得到(或创建)一个可用的空闲线程对象PooledThread,并调用PooledThread的对应启动函数开始任务。如果此时线程池内的线程都在忙碌中且线程数达到最大容量,将抛出一个NoThreadAvailableException()异常。用户可设置线程池的名字,最小容量,最大容量,并可以手动地清理线程池中的多余空闲线程(houseKeep函数)。ThreadPool的主要函数实现如下:
ThreadPool::ThreadPool(int minCapacity,
int maxCapacity,
int idleTime,
int stackSize):
_minCapacity(minCapacity),
_maxCapacity(maxCapacity),
_idleTime(idleTime),
_serial(0),
_age(0),
_stackSize(stackSize)
{
poco_assert (minCapacity >= 1 && maxCapacity >= minCapacity && idleTime > 0);
for (int i = 0; i < _minCapacity; i++)
{
PooledThread* pThread = createThread();
_threads.push_back(pThread);
pThread->start();//线程处于就绪(空闲)状态 其实是在等待Thread->_targetReady信号量
}
}
ThreadPool::ThreadPool(const std::string& name,
int minCapacity,
int maxCapacity,
int idleTime,
int stackSize):
_name(name),
_minCapacity(minCapacity),
_maxCapacity(maxCapacity),
_idleTime(idleTime),
_serial(0),
_age(0),
_stackSize(stackSize)
{
poco_assert (minCapacity >= 1 && maxCapacity >= minCapacity && idleTime > 0);
for (int i = 0; i < _minCapacity; i++)
{
PooledThread* pThread = createThread();
_threads.push_back(pThread);
pThread->start();
}
}
ThreadPool::~ThreadPool()
{
stopAll();
}
void ThreadPool::addCapacity(int n)
{
FastMutex::ScopedLock lock(_mutex);
poco_assert (_maxCapacity + n >= _minCapacity);
_maxCapacity += n;
housekeep();
}
int ThreadPool::capacity() const
{
FastMutex::ScopedLock lock(_mutex);
return _maxCapacity;
}
int ThreadPool::available() const
{
FastMutex::ScopedLock lock(_mutex);
int count = 0;
for (ThreadVec::const_iterator it = _threads.begin(); it != _threads.end(); ++it)
{
if ((*it)->idle()) ++count;
}
return (int) (count + _maxCapacity - _threads.size());
}
int ThreadPool::used() const
{
FastMutex::ScopedLock lock(_mutex);
int count = 0;
for (ThreadVec::const_iterator it = _threads.begin(); it != _threads.end(); ++it)
{
if (!(*it)->idle()) ++count;
}
return count;
}
int ThreadPool::allocated() const
{
FastMutex::ScopedLock lock(_mutex);
return int(_threads.size());
}
void ThreadPool::start(Runnable& target)
{
getThread()->start(Thread::PRIO_NORMAL, target);
}
void ThreadPool::start(Runnable& target, const std::string& name)
{
getThread()->start(Thread::PRIO_NORMAL, target, name);
}
void ThreadPool::startWithPriority(Thread::Priority priority, Runnable& target)
{
getThread()->start(priority, target);
}
void ThreadPool::startWithPriority(Thread::Priority priority, Runnable& target, const std::string& name)
{
getThread()->start(priority, target, name);
}
void ThreadPool::stopAll()
{
FastMutex::ScopedLock lock(_mutex);
for (ThreadVec::iterator it = _threads.begin(); it != _threads.end(); ++it)
{
(*it)->release();
}
_threads.clear();
}
void ThreadPool::joinAll()
{
FastMutex::ScopedLock lock(_mutex);
for (ThreadVec::iterator it = _threads.begin(); it != _threads.end(); ++it)
{
(*it)->join();
}
housekeep();//清理线程池
}
void ThreadPool::collect()
{
FastMutex::ScopedLock lock(_mutex);
housekeep();
}
void ThreadPool::housekeep()
{
_age = 0;
if (_threads.size() <= _minCapacity)
return;
ThreadVec idleThreads;
ThreadVec expiredThreads;
ThreadVec activeThreads;
idleThreads.reserve(_threads.size());
activeThreads.reserve(_threads.size());
//将线程池中的线程分为三类:正在运行的 空闲的(空闲时间小于_idleTime) 过期的(空闲时间大于_idleTime)
for (ThreadVec::iterator it = _threads.begin(); it != _threads.end(); ++it)
{
if ((*it)->idle())
{
if ((*it)->idleTime() < _idleTime)
idleThreads.push_back(*it);
else
expiredThreads.push_back(*it);
}
else activeThreads.push_back(*it);
}
int n = (int) activeThreads.size();
int limit = (int) idleThreads.size() + n;
if (limit < _minCapacity) limit = _minCapacity;//保证线程池中的线程数最少为_minCapacity
idleThreads.insert(idleThreads.end(), expiredThreads.begin(), expiredThreads.end());
_threads.clear();//清除线程数组(此时线程对象只是被转移,因此不会影响到正在运行的线程)
for (ThreadVec::iterator it = idleThreads.begin(); it != idleThreads.end(); ++it)
{ //如果忙碌的线程数n小于_minCapacity 那么再添加_minCapacity-n个空闲或过期线程到线程数组
if (n < limit)
{
_threads.push_back(*it);
++n;
}
else (*it)->release();//清除多余的空闲或过期线程
}
_threads.insert(_threads.end(), activeThreads.begin(), activeThreads.end());
}
PooledThread* ThreadPool::getThread()
{
FastMutex::ScopedLock lock(_mutex);
if (++_age == 32)
housekeep();
PooledThread* pThread = 0;
for (ThreadVec::iterator it = _threads.begin(); !pThread && it != _threads.end(); ++it)
{//尝试寻找空闲线程
if ((*it)->idle()) pThread = *it;
}
if (!pThread)
{//如果没有空闲线程
if (_threads.size() < _maxCapacity)
{//还有足够容量 则创建一个新线程
pThread = createThread();
try
{
pThread->start();
_threads.push_back(pThread);
}
catch (...)
{
delete pThread;
throw;
}
}
else throw NoThreadAvailableException();//容量不足 抛出异常
}
pThread->activate();//激活线程(将线程状态由空闲改为忙碌 并重设_targetCompelete信号量)
return pThread;
}
PooledThread* ThreadPool::createThread()
{
std::ostringstream name;
name << _name << "[#" << ++_serial << "]";
return new PooledThread(name.str(), _stackSize);
}
最后,POCO用单例模式提供了一个默认的线程池:
class ThreadPoolSingletonHolder
{
public:
ThreadPoolSingletonHolder()
{
_pPool = 0;
}
~ThreadPoolSingletonHolder()
{
delete _pPool;
}
ThreadPool* pool()
{
FastMutex::ScopedLock lock(_mutex);
if (!_pPool)
{
_pPool = new ThreadPool("default");
if (POCO_THREAD_STACK_SIZE > 0)
_pPool->setStackSize(POCO_THREAD_STACK_SIZE);
}
return _pPool;
}
private:
ThreadPool* _pPool;
FastMutex _mutex;
};
namespace
{
static ThreadPoolSingletonHolder sh;
}
ThreadPool& ThreadPool::defaultPool()
{
return *sh.pool();
}
参考文档:
poco官方使用文档:http://pocoproject.org/docs/
poco Thread模块官方介绍:http://pocoproject.org/slides/130-Threads.pdf