现在的位置: 首页 > 自动控制 > 科技·视野 > 正文

认知计算与大数据及人工智能有何区别

2016-06-18 15:37 科技·视野 ⁄ 共 1096字 ⁄ 字号 暂无评论

安防作为IT技术的延伸领域,对IT技术的吸收及融合发展成为当前安防界的主流趋势。大数据、云计算、云存储、智能分析技术、人脸识别、语音识别等IT技术都在快速融入安防技术,为安防设备在功能提升、业务拓展方面带来帮助。

认知计算是IBM提出的概念,认为“认知计算”是通过与人的自然语言交流及不断地学习,从而帮助人们做到更多的系统,是从硬件架构到算法策略、从程序设计到行业专长等多个学术领域的结合,能够使人们更好地从海量复杂的数据中获得更多洞察,从而做出更为精准的决策。在IBM,我们把它简化归纳为,具备规模化学习、根据目标推理以及与人类自然互动能力的系统。

认知计算与人工智能的区别是什么?

虽然认知计算包括人工智能的一些要素,但前者是一个更宽泛的概念。认知计算不是制造“为人们思考”的机器,而是与“增加人类智慧”有关,能够帮助我们更好地思考和做出更为全面的决定。

人工智能的概念已经有二十多年了,人工智能从历史和研究角度来讲主要目的是为了让机器人表现得“更像人”,我们称之为Intelligent Behavior。

IBM的认知计算从技术角度上来讲和人工智能是有很多共性的地方,比如机器学习(MachineLearning)、深度学习(DeepLearning)等方面都很类似。

但是,IBM的认知计算目的并不是为了取代人,而IntelligentBehavior也只是认知计算的一个维度。认知计算除了要能够表现人和计算机的交互更加自然流畅之外,还会更多地强调推理和学习,以及如何把这样的能力结合具体的商业应用、解决商业的问题。

认知计算和大数据分析有何区别?

大数据分析属于认知计算的一个维度。与大数据相比,认知计算的范围更广、技术也更为先进。

认知计算和大数据分析有类似的技术,比如大量的数据、机器学习(MachineLearning)、行业模型等,大数据分析更多强调的是获得洞察,通过这些洞察进行预测。此外,传统的大数据分析会使用模型或者机器学习的方法,但更多的是靠专家提供。

对于认知计算而言,洞察和预测只是其中的一种。但是,认知计算更为强调人和机器之间自然的交互,这些维度都不是传统的大数据分析所强调。

此外,认知计算目前成长很快的一个领域为深度学习(DeepLearning),它的学习方法与传统方法不同,更多的是基于大量的数据通过自学的方式得到这样的模型,而不需要很多的人为干预,这个从学习方法来讲和大数据分析有很多不同的地方。

对于安防技术而言,在融入IT技术之后,技术的更迭速度正在加快,新技术的推动也会让产业发生更加不可预知的风险,行业颠覆是非常可能的事,所以关键是谁可以掌握核心技术。

来源:搜狐科技

给我留言

留言无头像?