在美国再工业化的讨论中,自动化将拯救美国制造业是一个很流行的说法。自动化、机器人将取代熟练劳动力,节约劳动力成本,提高生产率,从而振兴美国制造业。当然,自动化和机器人无法解决美国的就业问题,不能解决再工业化最主要的目标:通过大量就业使美国经济重新走上正循环,但这是另外一个问题。这里的问题是:自动化能救美国制造业吗?
》》》漫谈自动化与人生
一般认为,自动化能做到几件事:
1、 提高产品质量
2、 节约生产线上的劳动力
3、 降低对熟练劳动力或者技术人员的需求
4、 理想的全自动生产方式中,系统还具有自学习功能
在实际上,前两件事是有条件的,后两条在很大程度上不是人们想象的那回事。
自动化的生产方式可以达到非常高的重复性,所以产品的一致性较好。但原料品质不是绝对一致的,生产设备也有磨损和状态的变化,在实际使用中,全自动的生产线也是需要经常调整的。自动化生产的产品可以达到相当高的产品一致性,但不能达到最高质量。最高质量只有根据原料和设备的情况实时做出最优调整,这只有手工才能做到。这不是低级劳动力的手工,而是高级技工的手工。这不是锉刀、钻头的手工,是借用精密机床的手工,甚至是数控精密机床,但在熟练的高级技工手里,根据每一件产品的材质精细加工。罗尔斯罗伊斯轿车和百黛翡丽手表不是用自动化生产线制造的,这里面有传统工艺的原因,但更大原因正在于此:只有手工才能达到最高质量。但对于大宗产品和普通用户来说,自动化生产达到的质量足够好了。
节约生产线上劳动力就不这么简单。在劳动密集型产业里,生产线上的劳动力是劳动力的主体,自动化生产无疑可以大大降低对劳动密集型产业的劳动力要求,这不是问题。问题在于自动化生产的设备维修、加工设计和生产改进本身带来了新的劳动力要求。广义的设备包括硬件和软件。以典型的大型化工厂为例,精馏塔、泵、管道、容器、反应器这些不因为自动化生产还是人工控制而改变,但计算机控制系统(简称DCS)及相关的仪表、阀门是自动化的产物。围绕着DCS,化工厂“多”出来一整条支援链,一般仪表工、专职DCS仪表工、专职PLC(专用于程序逻辑控制和安全连锁保护)仪表工、专职分析仪表工,控制工程师、DCS工程师(负责系统软件和系统整合)、控制系统IT工程师(负责是DCS到商务/管理网络中间过渡层和通过OPC和DCS连接的先进控制、数据管理系统),这只是在化工厂里的这一部分。相关系统厂商还有一整套技术支援体系,从硬件到软件到应用全面支援,他们当然还有他们的上游支援体系。这样一整条产业链的人力是很可观的,尽管系统厂商及上游厂商的支援体系是在全行业共享的,而不是化工厂专用的。
到这里为止,自动化对拯救美国制造业的作用还是正面的。但接下来的事情就不那么清晰了。
自动化能降低对高级技工的需求吗?从表面上看,一切都自动了,人的存在都是多余的,当然能降低对高级技工的要求。实际上没有那么简单。自动控制系统可以控制正常生产条件,并处理有限的、已知的非正常情况。但只要在现实世界中生活过的人都知道,未知的非正常情况不仅是可能出现,而且总是在最要命的时候出现,只有训练有素和善于应变的高级技工才能对付,所以人的存在不仅是必要的,而且是救命的。但自动化正在产生新的问题。由于自动化系统自动处理绝大多数正常和低度离谱的情况,轻度异常工况的情况都被自动补偿了,容易使操作工产生麻痹和懈怠,并忽视潜移默化的异常征兆。一旦出现明显异常的情况的时候,通常已经很紧急了。这时首先要经过一个惊讶和反应阶段,然后就需要判别现状,回忆起或者翻出种种应急操作规程。由于这样的异常情况很少见,和平常的正常情况的反差太大,心理素质不特别好的操作工常常不能正确处理,像平常一样继续依赖自动化系统把他解围,没有正确判别这已经超出自动化系统的能力范围,造成故障升级,甚至演变成灾难性的事故。墨西哥湾里英国石油公司“深水地平线”平台事故中,就有操作工惊慌失措、当断不断的原因,造成事故升级和人员伤亡扩大。相反,自动化程度不高的话,操作工时时刻刻需要对过程“把脉”,容易察觉异常现象的蛛丝马迹,反而不容易出现故障升级现象。对自动化系统的过度依赖、不能正确判别和处理自动化系统失控的状态,这已经成为工业界的一个共同头痛。工业上通常使用仿真系统(也称模拟器)训练操作工的异常情况处理,但训练的成功与否取决于是否能正确预测典型异常情况,超出训练课程的异常情况依然要靠操作工随机应变,但高度自动化系统非常容易钝化人的随机应变能力。
还有一个问题是工作负荷的高度集中。在手动操作时代,很多操作工分兵把守,各自为政。自动化之后,很多机械的、重复的工作被自动化系统取代了,操作工在更高的层次监控自动化系统。在体力上,这更加轻松;但信息量实际上大大增加,需要关注的事情多得多。这好比交通警察。在一个交通警管一个路口的时候,他要根据车流情况开关红绿灯,指挥这个路口的交通。交通控制自动化后,他的工作岗位转到交通控制中心,具体路口的红绿灯控制转为自动控制。在正常情况下,他要眼观六路、耳听八方,从确保一个路口交通畅通变为确保一大片路口交通畅通。一旦自动控制不力,出现交通受阻,他需要及时人工干预,正确疏导,而不是加剧堵塞,实际上工作负担是增加了,对技能的要求也大大提高了。
高度自动化的另一个问题是操作经验的流失。随着人员流动,有经验的老资格操作工被缺乏经验的新操作工取代,新操作工从一开始就依赖自动化系统,缺乏实际经验,到时候想随机应变都无从入手。这就好比用GPS导航自动驾驶的汽车,在正常情况下不需要人的干预,可以安全自动地从A开到B。车上的人在原则上是可以手动超越驾驶的。问题是久而久之就生疏了,或者只有理论上的能力,真的到了GPS失灵的时候,驾车人临时抱佛脚,不把车开到沟里才怪。
操作经验流失的另一个坏处在于未来自动化系统的研发。自动化系统不是天上掉下来的,更不是纸上谈兵拍脑袋出来的,而是丰富操作经验的物化。高级技工的经验不仅对于现有生产过程十分重要,对于把新的生产过程开出来更加重要。只有通过他们把新过程摸出来了,才谈得上高度自动化。自动化的难点通常不在关键过程或者动作的自动化,而在于异常情况的处理、人机交互处理、不同状态之间的无缝转换,这些都不是理论或者空想可以解决的,必须要靠高度的经验。所以自动化降低了对中初级技工的需求,但不降低对高级技工的需求。问题是高级技工不是天上掉下来的,也是从中初级技工中筛选出来的。这使得自动化带来的技术进步难以为继,因为生产技术和产品技术是不断进步的,但高级技工成了无源之水之后,下一步的自动化就难以为继了。换句话说,依赖自动化的制造业振兴可能成为一次性的。
这个问题在工程技术人员中也存在。美国制造业公司中技术工作大量外包,一般性设计和工程管理都承包给EPC公司(Engineering Procurement Construction),以降低公司的负担。这对公司是有利的,有项目的时候请人来做,没项目的时候不需要养一支队伍,更没有福利、养老等长期负担。外包的公司都是专业人士,经验和见识比公司里的人还广。问题是EPC公司对用户公司的工程标准和项目程序有一个熟悉过程,这中间的磨合常常令人抓狂。更要命的是,现在可以依靠EPC公司,但大家都没有从第一线出来的工程师了,下一代EPC的人马从哪里来?这种“我死后哪管他洪水滔天”的短视做法和试图用自动化振兴制造业一样成问题。
不过计算机技术、人工智能的高速发展给人们以新的希望,说不定以后高度智能的系统可以自学习了,那就彻底摆脱对高级技工的依赖了。摩尔定律依然在发光,计算机的速度依然在以不可思议的速度增长,“你怎么知道以后计算机就不能比人聪明呢?”
人工智能的极限是一个哲学问题,在这个问题没有解决之前,计算机是否可能比人聪明都是空谈。人类智能到现在为止依然是一个无法定性和计量的东西,人类智能的生成、演进、转移和储存都是远远没有解决的问题,更谈不上复制或者超过人类智能。智能不是知识的堆积,具有海量的数据库和闪电般的快速检索并不能绕过知识的堆积不等于智能这个障碍。面对同样的数据,不同的人会做出不同的反应,人工智能要超越的是谁的智能?事实上,人工智能极限作为一个哲学问题,是否对人工智能实践没有实质性指导意义呢?自动控制理论比计算机和人工智能先行,很多东西可以借鉴。早期控制理论使用输入-输出模型,但60年代卡尔曼提出状态空间理论,用状态方程建立全新的模型,更加深刻地揭示了动态系统的本质,并且把线性/非线性、定常/时变、确定性/随机、单变量/多变量理论放到统一的架构之下。同时,状态空间也第一次触及可控性概念。在一定的条件下,系统的状态不是完全可控的,不管控制系统设计得多精巧都不管用。可控性就是一个跨不过去的坎。人工智能的极限是什么?这个问题最终是绕不过去的。
就更具体的自学习系统而言,自动控制理论里也早就有了模型参考尤其是自校正控制,这就是入门级的自学习系统。这些概念在60、70年代就提出,也曾经是的人们大为振奋。自控理论的一个关键难点在于拥有形式合适而且精确可靠的动态数学模型,但对于大多数工业过程,这个模型难以获得,所以早期的控制理论常常停留在空谈的层次。自校正控制把在线辨识和最优控制相结合,一面实时校正数学模型,一面根据最新更新的数学模型实时调整控制策略,这不解决了缺乏数学模型的问题了吗?实际上没有,只是把问题的复杂性转移到另一个方向上去了。在线辨识需要过程处于动态中,只有牛鬼蛇神纷纷出动,才能辨识出过程的真实特性。但辨识的目的是形成最优控制,也就是把牛鬼蛇神统统镇压下去。但是都牛鬼蛇神都镇压了,在线辨识就要瞪大眼睛无事生非、没有牛鬼蛇神也草木皆兵造出几个来,导致模型失真,真有牛鬼蛇神再露头的时候,就容易发生过程失控。这个问题有很多就事论事的办法,但没有能从本质上解决的。人工智能的自学习是否会遇上同样的问题,这只有人工智能专家来解答,但类似的问题是逃不掉的。对于复杂过程的控制,最终取决于实质性的理解,而不是用投机取巧的数学方法绕过学习关。数学是对现实的抽象,但不下功夫理解现实,抽象就成了无源之水、无本之木,必定要误入歧途。这就是自学习救不了人工智能的本质原因。
对于系统复杂性,还有另一个例子。传统数学模型有一个公式,形式可以很复杂,可以有很多方程联立,可以是代数方程和微分方程的混合,并加入随机等其他复杂性因素,但这种传统数学模型能够描述的现象受到具体方程形式的限制。在研究人类智能的过程中,人们提出神经元的数学模型。这是一个简化的模型,但把很多这样的简化模型组网连接起来,可以描述几乎无限的现象,但神经元网络本身依然在数学或者计算上相对简单。神经元网络出现后,很多人以为这是终极数学模型,只要有足够多的数据和包括进所有的变量,从此可以把世界上所有复杂现象一网打尽。在学究们还在颤颤巍巍地刺探神经元网络的数学特征的时候,已经有人把它用于股票预测、市场预测和其他来钱的名堂,结果没有悬念:没戏。还是那句老话:数学是对现实的抽象,但不下功夫理解现实,抽象就成了无源之水、无本之木,必定要误入歧途。
那么自动化可以救美国的再工业化吗?自动化是一个工具,这个工具是要人来使用的。换句话说,这是一个力量倍增器,但基数是人。美国再工业化的关键还是人。想绕过美国人力资源的现实,用自动化来创造奇迹,这条路是走不通的。美国的人力资源问题是另一个话题了。工业DCS已经有很多自带“自动参数整定”软件,可以对自控回路自动整定,这或许是自校正控制的简化和实用版。这东西有用吗?软件能整定的回路,只有最基本的整定知识和经验的控制工程师都能搞定;工程师搞不定的,软件根本没戏。这就是inconvenient truth。
作者:晨枫
DCS系统的性能高点低点,系统软件性能高点低点,这些都不是最重要的,花点功夫,没有条件创造条件,总是可以在功能上满足的。就像用DOS2加WordPerfect还是用Win7加Word2010写文章,关键在文章,差别顶多是配图、格式什么的,而不是文章的内容。自动化的难点在于对于过程的深刻理解,这是理论所不能代替的。最好的医生是最了解病人的医生,而不是生理学家、药学家、病理学家,哪怕是得诺贝尔奖的大家。问题的解决在于工具的最优应用,但工具本身的好坏并不是决定性的。阿波罗时代的计算机技术和控制理论水平大大不及现在,但那一代人对航天控制具有深刻理解(不是拍脑袋拍出来的,而是汗与血里练出来的)。神经元网络不是什么了不起的东西,但想到而且正确应用神经元网络,这才是了不起的,具体编程方面,大不了找一个人来编就是了,花公司里几个钱的事。
首先,完全同意这样的意见:没有了中低层,高层就是无本之木,早晚要枯萎。这是美国的重大问题。他们如果要再工业化,必须要能够把中低层都再做起来才行。至于是否能够,就不是简单的技术问题,而是他们的整体的社会问题,的确困难重重。不过,我想大家还是要看到美国社会的活力。有活力,困难总是能够克服的。
其实想说的是机器学习。先举个例子。不知大家是否看美国的电视片“How to Make It”?其中有很多工业自动化线的介绍。记得有一次看他们的可口可乐饮料的灌装自动线,自动线上有很多机器人,对其中的一个机器人有比较深的印象。压制好的铝罐从自动线上流水而来,速度很快,估计每秒过10个,那个机器人有摄像头,有智能判别,可以辨别铝罐是否合符质量要求,如果不符合,就把那个铝罐踢出去。不知道具体怎么做智能判别的,不过从电视上看,是有一个软件,对实时获取的图像,在屏幕上和已有的模板做对比,然后决定是否踢出。应该说,这是比较简单的模式识别的软件。不过,虽然是相对简单的软件,正如晨枫说的,要支持这个软件和实施操作,需要一个不小的支持队伍。特别的是,如果这个自动线是柔性的,可以生产多种罐的,每过若干天就换生产的内容,要支持这个机器人的队伍就更大一些。但是,如果这个机器人具备了比较强的机器学习能力,那么需要的支持队伍就可能要小一大截。目前的机器人,多半都达不到有比较强的学习能力,他们能够做模式识别,其实还是靠的是很仔细的编程,也就是说通过人工,慢慢磨合,获取数据,然后把这些数据编进程序里面。不过,机器学习也正在上来。机器具备自主学习能力后,这些大量的人工,就可以省去,还是非常有价值的。完全意义上的人工智能是很难的事情。但是,比现在进一步,先让机器具备某种学习能力,特别是非常专注的方面的能力,例如那个判断罐子是否符合质量标准的能力,还是可以有很大帮助的,在若干领域,也有可能起到生或者死的作用。
至于说机器学习,这里有一个实例。加拿大滑铁卢大学有一个课题组,组建了目前世界上最复杂的“仿真大脑”Spaun,由250万个模拟神经元组成。比如,由一个摄像头“看”某静物,经过这个高仿大脑“想”,再用一个机械臂模仿着画出来。这类婴幼儿的动作(包括思考和回答问题),Spaun可以胜任8种任务,而且可以通过智商测试。而Spaun最新的研究成果非常有趣,就是这个仿真大脑,同样具有人类大脑的缺点,该迷糊时也不含糊。比如,听完问题后需要想片刻再回答——而科学家们本以为运算以毫秒计,提问的人是感觉不到这“片刻”的。而且,要Spaun记忆一组长数字时,它会只记得首几位和末尾几位,对中间的数字很模糊——这是我们人类记忆自己的信用卡的标准动作——而科学家们本以为记忆对于Spaun根本不是问题,想象力才是问题。这个课题组的领衔教授,居然是哲学系的,看来“人造马克思”已经不远哉。
这个自动化或者机器人技术在30年前就是热潮了,但还是不断的产业转移的其他国家,还是有大量生产需要用人工。为什么?就是利润率的问题,利润的提高不是靠单单加强自动化能解决的,这还涉及到配套能力,原材料因素等等,当然还有劳动力的水平与价格。我是看不出现有技术美国还能掀起一场自动化技术革命,以降低产品成本提高产品质量。机器人自我学习技术目前还在发展阶段,还不足以提高整个工业界的利润率