当今视频娱乐市场以内容为王,能够实时转换任意格式的视频内容是未来市场发展的一个核心趋势。即使不被众人所了解,但是视频转码技术必将得到广泛的使用。视频转码是指将某一视频格式转换为另一视频格式的过程,通常都是先将视频暂时解码,然后重新编码成需要的格式和数据编码速度。
IDC分析指出了三种主要的转码需求:不同视频格式间的转换,例如从MPEG-2或者MPEG-4转到H.264;内容传输,改变比特率满足不同网络带宽或者设备播放速度的需求;清晰度,将高清视频转为标清甚至更低的清晰度,后者反向处理。典型的例子是,为了进行编辑并将信息上载到网站(例如 YouTube)而将视频从摄像机传输至 PC 的应用。视频数据传输时,代码转换也正在进行;例如从摄像机(AVI 格式)到 PC(用于编辑的 MPEG-2;用于存储的 MPEG-4)再到网站(H.263/H.264/Flash/等)。如果要在 PC 上观看网站上的文件,则需再次执行代码转换使其能在 RealPlayer 或 Windows Media Player 上播放。
转码的市场需求
视频转码技术的发展及不断增加的需求与广播电视数字化进程密切相关,目前转码技术的主要应用领域是数字电视广播和数字媒体前端处理。 “其实,多解码芯片的应用只是在‘看’节目上应用,它让设备可以支持多种类型的信号源。”富士通市场经理黄自力指出:“但有时有些场合只需要一种信号源,比如有线电视的前端,最好采用同一格式播出节目,这时候就需要将一部分节目的格式进行转换。”
当前大量数字视频节目为MPEG-2格式,而许多新的播放设备为提高传输和存储效率而采用诸如MPEG-4\H.264 \Real\VC-1\AVS等高级数字编解码格式,因此源于MPEG-2的转码技术已大量采用,而对与此相关的高清晰度转码的要求也越来越高,特别是实时转码技术及其实现手段的提高。
另外,在硬盘录像机里,在MPEG-2格式时候占用硬盘空间太多,一部高清电影要占8G左右的硬盘空间,这就需要转成更高压缩比的H.264格式,从而扩大容量,节省硬盘的投入成本,同时也可以降低整机的重量和体积。像富士通的MB86H52就可以在保证节目质量不变的情况下,最大达到5倍的容量扩展。
还有一些场合下,比如利用网络来传输节目,MPEG-2就需要占用较大的带宽,如果带宽有限,就可以将MPEG-2的信号转成H.264的信号,用较小的带宽来进行传输,并且还可以进一步利用视频转码处理器降低H.264信号的码率,使之能够适应网络的传输。
转码技术将用来满足更广泛领域的数字视频多制式转换需求,不仅应用于包括视频广播转码、媒体网管、多会议单元 、医疗影响和视频监控等商用产品中,而且也将用于包括数字媒体适配器、高清视频会议终端、高级数字机顶盒、IP视频电话和高清网络摄像机等消费类产品。如图1所示,在商用产品中转码技术支持更高密度非常必要,而在消费类产品中转码技术的单片高性价比则必需。
黄自力也指出:“转码设备的应用市场还是很大的,新的应用还将被不断开发出来。”
转码技术的实现
视频转码市场已经开始吸引了不少数码设备厂商和半导体公司的关注。前者出于市场实际需求的考量,一般都自行开发出从MPEG-2到H.264的ASIC转码芯片并集成在产品中。例如松下的HDD录像机DIGA系列采用了自己开发的UniPhier芯片,可以在录制节目的时候将17Mbps基于MPEG-2的数字电视信号转换成5.7Mbps的H.264格式,从而大幅提高了视频录制时间。日本的索尼和日立等公司也在2007年推出了采用自有芯片的具有转码功能的产品。
随着半导体公司对转码技术的兴趣提升,支持MPEG-2、H.264、VC-1等多种格式转换的新品也在去年陆续面市。但是策略也不完全相同,目前转码技术的实现手段有偏向软件和硬件两种,前者通常采用高速计算机或者高性能的DSP,后者一般采用专用ASIC或者FPGA。谈到这几种方案的区别,TI通用DSP业务发展经理郑小龙认为:“数字视频编解码及转码的应用中高端DSP在实时处理中始终是主力平台。在基本的媒体处理平台中,ASIC类芯片一旦设计完成交付流片,则各种功能均不能再改变;FPGA虽属有硬件可编程器件,但如果硬件设计完成并制板之后,就很难再有大的改动;DSP作为嵌入式软件可编程平台所备受关注之处在于全面支持各种视频标准算法,即便是已完成产品仍可以通过软件更新的方法进行升级。”
TI支持多格式的高清多媒体处理器DM6467是一个包含多个处理器和核心的SoC,不是多个并行处理单元的罗列。DM6467中主要视频处理核心为高速高清协处理器(HD-VICP)、高速DSP和视频数据转换引擎三个部。其中HD-VICP 通过编码和解码两片专用加速器实现了相当于 3 GHz 以上的 DSP 处理能力,支持 HD 1080i H.264 高类转码;高速DSP采用主频为600MHz的C64+核,辅助支持H.264 高清编解码和转码时,所耗费时钟低于300MHz,且DSP应用非常灵活,既支持早期算法,也支持新算法以及专有算法。视频数据转换引擎具有视频下垂直调节器能降低 DSP 负载,色度采样在硬件中完成,并有菜单覆盖功能。DM6467还集成有300MHz的ARM9核心,可以支持多种嵌入式实时操作系统,并实现各种主控和管理工作。
Broadcom公司去年发布了采用65纳米制造的高清视频转码单芯片解决方案BCM7043。BCM7043主要的嵌入模块包括:视频压缩引擎,非压缩视频输入传送到此编码引擎,把非压缩视频图片系列转换为H.264、AVC、MPEG-2或MPEG-4压缩视频流;视频解码(AVD),AVD模块解码压缩视频以供视频压缩子系统的再编码;音频模块,包含可编程的音频处理器,它支持实时的MPEG-1、Layer-II、Dolby Digital、Dolby Digital Plus Stereo、DTS、DTS-HD、MP-3和PCM解码,以及实时的MPEG-1、Layer-II、Dolby Digital、MP-3和PCM音频格式的编码;视频输入处理器(VIP):VIP模块提供编码需要的非压缩视频,在视频预处理器、运动补偿时间滤波(MCTF)以及数字降噪的配合下获得最佳的视频质量和最佳的压缩效率。
转码芯片的差异化关键是可支持多样化的编码格式,尤其是向便携式产品的延伸。加拿大威视(ViXS)系统公司开发的转码芯片XCode3290就具有称做“镜像转码”的功能,可以将HDTV的视频内容同时转换成2种不同编码格式。例如,将MPEG-2的HDTV视频转码成H.264的同时,还能将分辨率缩小为320X240像素的QVGA,方便在iPod等便携产品上播放。
潜在挑战
视频转码是一个高运算负荷的过程,需要对输入的视频流进行全解码、视频过滤/图像处理、并且对输出格式进行全编码。最简单的转码过程(图3)仅仅涉及到解码一个比特流和用不同的编解码器重新编码两个步骤。这种硬转码看似很简单,只需要一个解码器和一个编码器,但是最终显示结果并不理想,因为视频数据解码后重新编码会降低画质。
图3 硬转码的过程
硬解码无法利用捷径,所以和采用智能转码算法的方法相比,要求更高的处理器性能并且产生更大的功耗。如果全部通过软件进行临时处理,需要2GHz频率的处理器。以现在PC上的CPU的运算能力,在运行其他程序的情况下,是无法支持实时的高清视频转码,更不要提机顶盒这样的消费产品。
用一个专用的转码处理器减轻核心处理器的任务,对于机顶盒和数字录像机这样的设备更有帮助。而高清的转码更具挑战性,因为需要处理的数据远远高于标清格式。事实上,在没有硬件加速器的情况下,就算是当前比较高端的PC处理器都不能实施解码1080i的流媒体,即便是非实时的转码过程也会消耗很多系统资源。
对于改善因为转码带来的图像质量下降的问题,常见的方法都是在转换前通过软件对已编码的视频数据进行分析,并且在重编码时采用这些分析,从而改善画质。具体来说,就是在解码原始视频时,通过DSP内核对动态矢量信息进行分析。源数据的动态矢量信息正确时,就在编码过程中采用这些信息,当发觉动态矢量信息不合适,就通过编码器再次检测动态矢量,然后重新分析检测到的信息。