古今中外有不少著名的悖论,它们震撼了逻辑和数学的基础,激发了人们求知和精密的思考,吸引了古往今来许多思想家和爱好者的注意力。解决悖论难题需要创造性的思考,悖论的解决又往往可以给人带来全新的观念。
本文将根据悖论形成的原因,粗略地把它归纳为六种类型,分上、中、下三个部份。这是第一部份:由概念自指引发的悖论和引进无限带来的悖论
(一)由自指引发的悖论以下诸例都存在着一个概念自指或自相关的问题:
如果从肯定命题入手,就会得到它的否定命题;如果从否定命题入手,就会得到它的肯定命题。
(二)引进无限带来的悖论《墨子。经说下》中有一句话:“南方有穷,则可尽;无穷,则不可荆”
如果在有限中引进无限,就可能引起悖论。
(三)由一因多果片面推理引致的悖论这种形式的悖论类似于诡辩。诡辩在现实中是令人厌恶的,但是在逻辑学的探讨中有相当的位置。孔多塞说:“希腊人滥用日常语言的各种弊端,玩弄字词的意义、以便在可悲的模棱两可之中困搅人类的精神。可是,这种诡辩却也赋予了人类的精神以一种精致性,同时它又耗尽了他们的力量来反对虚幻的难题。”
古希腊哲学流派中曾经有一个诡辩学派,又叫智者派。他们对自然哲学持怀疑态度,认为世界上没有绝对不变的真理。前面提到的普洛道格拉斯(Pro-tagras,约公元前485-前410)是其著名的代表人物,他认为:“人是衡量万物的尺度。”雅典政府因其主张无神论,予以驱逐并焚烧了他的书籍。
从苏格拉底到亚里斯多德都反对诡辩学说,黑格尔说,苏格拉底常运用他的辩证法去攻击诡辩学派,尤其是普洛道格拉斯。尽管这些智者的理论多已失传,我们仍然可以从亚里斯多德的《形而上学》(吴寿彭译)中了解一些当时的论辩。根据亚里斯多德的记载,柏拉图(Plato,公元前427-前347)曾说:诡辩是专讨论“无事物”的,因为诡辩派的论题老是纠缠于事物的属性。
例如,“文明的”与“读书的”为同抑异,“文明的哥里斯可”与“哥里斯可”是否相同?以及每一事物并不常是而今是者,是否便当成是,由此而引致(悖解)的结论(同上)。
斥形式逻辑而提倡辩证法的黑格尔(1770-1831)说柏拉图发明了辩证法。“柏拉图运用辩证法以指出一切固定的知性规定的有限性。他从一推演出多,但仍然指出多之所以为多,复只能规定为一。”(《小逻辑》)
亚里斯多德认为:凡现存的事物其生成与消失必有一个过程,而属性事物则不然。然而,我们还得尽可能地追踪偶然属性之本质与其来由;也许因此可得明白何以不能成立有关属性的学术(《形而上学》卷六章二)。在他看来,诡辩理论就是“有关属性的学术”而不是“属性之本质与其来由”。
诡辩完善的是学术体系,而不是知识。孔多塞在《人类精神进步史表纲要人类精神进步史表纲要》(何兆武、何冰译)的《第四个时代》中说:然而希腊的智者和希腊的学人,“并没有发现真理,反而是在铸造各种体系;他们忽视了对事实的观察,为的是自己好投身于自己的想象之中;他们既然无法把自己的意见置于证明的基础之上,便力图以诡辩来维护它们。”
可见,诡辩学派的致命点就是忽略“本质”而纠缠“属性”,从现存的事物中推论出悖解的结论来,而不详细考察事物的真实,在实践的基础上加以证明。
对付诡辩最好的方式是运用辩证法并在实践中加以考证。
3-1“什么是诡辩?”
有学生问他的希腊老师:“什么是诡辩?”老师反问到:“有甲乙两人,甲很干净,乙很脏。如果请他们洗澡,他们中间谁会洗?”这里有四种可能,一是甲洗,因为他有爱干净的习惯;二是乙洗,因为他需要;三是两人都洗,一个是因为习惯,另一个是因为需要;四是两人都没洗,因为脏人没有洗澡的习惯,干净人不需要洗。这四种可能彼此相悖,无论学生作出怎样的回答,老师都可以予以反驳,因为他不需要有一个客观的标准,这就是诡辩。
3-2“父在母先亡”
这是一个可以自圆其说的乩语。它也有四种解释:一是“父在,母先亡”;二是“父在母之先亡”;三是如果父母健在,可以解释为将来;四是即使父母都去世了,也可以解释为“父亲在的时候,母亲就去世了。”或者是“父亲在母亲以前就去世了。”真是左右逢源。
从逻辑顺序上看,上面这两个例子正好是反其道而用。无论正命题还是反命题都可以根据所谓的客观理由进行诡辩,形成自圆其说或诘难。所以葛拉西安在《智慧书:永恒的处世经典》中说:“诡辩是一种欺骗,乍一听,它蛮有道理,并因其刺激、新奇而令人心惊,但随后,当其虚饰之伪装被揭穿,就会自取其辱。”
3-3邓析赎尸诡论《吕氏春秋》记载了这样一个故事:洧水发了大水,淹死了郑国富户家的一员。尸体被别人打捞起来,富户的家人要求赎回。然而捞到尸体的人要价太高,富户的家人不愿接受,他们找邓析出主意。邓析说:“不用着急,除你之外,他还会卖给谁?”捞到尸体的人等得急了,也去找邓析要主意。邓析却回答:“不要着急,他不从你这里买,还能从谁那里买?”
邓析生在春秋末年,与老子和孔子基本同时,是战国名家的鼻祖,著名的讼师,他的著作已经失传。同一个事实,邓析却推出了两个相反的结论,每一个听起来都合乎逻辑,但合在一起就荒谬了。邓析是不是希望他们相持一段时间后,双方都可以找到一个可以接受的价格平衡点?我们只能猜测。后来,邓析被杀,就是因为子产认为他“以非为是,以是为非,是非无度,而可与不可日变”。可见,邓析是一个没有原则的人。身为讼师,邓析善于辞辩,而不跳出诡论寻找客观的解决办法。严谨的逻辑推理固然具有说服性,但最终还是要回到现实中来。
3-4公孙龙论秦赵之约《吕氏春秋》介绍过公孙龙的一个诡论:秦国与赵国订立条约:今后,秦国想做的,赵国帮助;赵国想做的,秦国帮助。不久,秦国兴师攻打魏国,赵国打算援救。秦王不高兴,差人对赵王说:秦国想做的,赵国帮助;赵国想做的,秦国帮助。现在秦国要打魏国,而赵国援救他们,这是违约。赵王把这个消息转告给平原君,平原君向公孙龙请教。公孙龙回答:“赵王也可以派人对秦王说:赵国打算援救魏国,现在秦国却不帮助赵国,这也不合乎条约。”
不管这个寓言的真实性如何,他的推理无懈可击。公孙龙对于秦赵之约的回应,与邓析赎尸诡论一脉相承。但公孙龙是站在弱小的赵魏这一边反对强秦的。
3-5“彼亦一是非,此亦一是非。”
这是《庄子。齐物论》中的一句话,以强调事物的相对性而著称,比如,人睡在潮湿的地方会腰疼,但泥鳅会腰疼吗?人爬到高树上会胆怯,猿猴会腰疼吗?于是,他的结论是:“彼亦一是非,此亦一是非。”各有各的相对标准。
《团结报》曾经刊登过一篇一勺的《名师出高徒》。说康白情1919年前在北京大学选修马叙伦先生的“老庄哲学”,没有一次不迟到。有一次,马叙伦责问康白情为什么姗姗来迟。康白情回答:“住得太远。”马先生不以为然,反问道:从你的住处走到这里只要三、五分钟,怎么叫太远!康白情也不示弱,说:先生讲庄子,庄子说:“彼亦一是屋非,此亦一是非”。先生不以为远,而我以为远。马叙伦一时无话可说。
3-6“我没有受贿”
一个商人被控受贿。他宣称:“我没有受贿。”显然,这个商人既是观察者也是被观察者。我们不知道他是以观察者的身份进行辩护,还是以被观察者的身份进行诡辩。这两种推论都合乎逻辑,如果没有别的证据,就不能判决。
3-7囚犯诡论甲乙两人偷东西,人赃俱物。他们被分开审问,可能的惩罚如下:乙否认乙承认甲否认:甲、乙各一年监禁乙释放、甲五年监禁甲承认:甲释放、乙五年监禁甲、乙各三年监禁甲乙二囚犯都会想到对自已最有利的去做:以甲而言,甲若承认,最多三年监禁,如果乙也承认;如果乙否认,甲马上获得自由。这个结果并不坏。这是博弈,乙也会同样这么想。如果甲改变主意,将冒监禁五年,而乙却获得自由;反之也一样。如果双方都改变主意,各监禁一年,也可以达到“共利”。
但是,这一决策的过程可能是无限的理性推理:假如我选择“共利”策略,我必定相信对方也将选择“共利”策略;假如我选择“私利”策略,对方也会选择“私利”策略予以防范。这个“推己及人,推人及己”的过程可以无限地推下去,他的极限状态在博弈论里叫做“共享知识”,但是没有人可以达到这个状态,囚犯也摆脱不了这个悖论。
(四)由名实相悖引起的悖论古代中国有不少经典的悖论都来自名家。名家是战国时期的一个学派,他们的学说在于循名责实,但结果也往往被认为是流于诡辩。名家始于邓析,后有惠施、公孙龙等大家。
在古希腊,亚里斯多德认为:辩证家与诡辩派穿着与哲学家相同的服装,但不是一回事。对于诡辩术,智慧只是貌似而已,辩证家则将一切事物囊括于他们的辩证法中,而“实是”也是他们所共有的一个论题;因而辩证法也包含了原属于哲学的这些主题。诡辩术和辩证法谈论与哲学上同类的事物,但哲学毕竟异于辩证法者由于才调不同,哲学毕竟异于诡辩术者则由学术生活的目的不同。哲学在切求真知时,辩证法专务批评;至于诡辩术尽管貌似哲学,终非哲学(《形而上学》卷四章一)。
冯友兰先生在《中国哲学简史》第八章《名家》里有专门的讨论。他认为,中国的“名家”不完全等同于西方的诡辩家、逻辑家或辩证家。如果说古希腊的辩证家和诡辩派专攻属性而不是本质的话,那么名家则在于研究“名”与“实”的关系,而且重“名”甚于重“实”是他们的精神实质。这里的“名实”就是名目与实际。冯友兰认为中国的名家应该翻译为“SchoolofName”以示区别,我在《不列颠百科全书》上看到的正是这样翻译的。
名与实关系的争论对中国哲学的影响巨大,如“孔子有正名、老子有无名、墨子有取实予名的争辩”。除名家以为,荀子对古逻辑学的贡献也很大。公孙龙的辩论执名为实,“专决于名”而不落实到经验的事物,看看他的雄辩,就会发现一些奇怪的问题。《庄子。秋水篇》提到,公孙龙曾经自夸:“困百家之知,穷众口之辩”。
4-1“白马非马”
战国时赵国人公孙龙曾经著有《公孙龙子》一书,平原君礼遇甚厚。其“白马非马”和“坚白异同之辩”都是他的著名命题。据说,公孙龙有一次骑马过关,把关的人对他说:“法令规定马不许过。”公孙龙回答说:“我骑的是白马,白马不是马,这可是两回事埃”公孙龙的“白马”有没有过关,我们不得而知。从常人的观点来看,守关的兵士八成认为公孙龙是在诡辩。这也是一个逻辑上“莫能与辩”,现实中不能成立的例子。
冯友兰认为《公孙龙子》里的《白马论》对“白马非马”进行了三点论证:一是强调“马”、“白”、“白马”的内涵不同。“马”的内涵是一种动物,“白”的内涵是一种颜色,“白马”的内涵是一种动物加一种颜色。三者内涵各不相同,所以白马非马。二是强调“马”、“白马”的外延的不同。“马”的外延包括一切马,不管其颜色的区别:“白马”的外延只包括白马,有颜色区别。外延不同,所以白马非马。三是强调“马”这个共相与“白马”这个共相的不同。马的共相,是一切马的本质属性,它不包涵颜色,仅只是“马作为马”。共性不同,“马作为马”与“白马作为白马”不同。所以白马非马。
前面我们说到,辩证法是在对付诡辩论的过程中发展起来的。黑格尔在《小逻辑》中说:“辩证法切不可与单纯的诡辩相混淆。诡辩的本质在于孤立起来看事物,把本身片面的、抽象的规定,认为是可靠的。”(《逻辑学概念的进一步规定和部门划分》)
从辩证法的角度看,“白马非马”割断了个别和一般的关系。白马属于个性,特指白颜色的马;马属于一般,具有各种颜色马的共性。公孙龙区分了它们之间的差别,但是又绝对化了这种差别。白马尽管颜色上不同于其他的马,如公孙龙提到的黄马、黑马,但仍然是马。作为共性的“马”寓于作为个性的“白马”之中。“马”作为一般的范畴,包括各种颜色的马,公孙龙的白马自然也不例外。
4-2“杀盗非杀人也”
这个命题与“白马非马”何其相似,尽管论证的方法和目的不同。荀子把墨辩“杀盗非杀人也”归入“惑于用名以乱名”的诡辩。荀子认为,在外延方面“人”的范畴包含了“盗”的范畴。所以,说“盗”的时候,就意味着说他同时也是“人”;杀“盗”也是杀人。
4-3坚白石论坚白石论指一块“坚白石”,它有坚、白、石三个要素组成。公孙龙主张“坚”为石头的特性,“白”为石头的颜色。眼睛看到的这块石头是白色的,手触摸到的这块石头才知到它是坚硬的;白色由视觉而得,坚硬由触觉而来,坚与白不能同时被认知。因此,公孙龙认为就一块坚白石而言,人不可能同时认识到其中三个组成要素:坚、白、石,而只能是坚石或白石。
这是从感知的角度来证明坚、白彼此分离,是分析方法的早期运用。“离坚白之辩”是古代中国的一个著名命题,习惯上人们并不接受,但是对于名家自身来讲,如果没有精密的思考,也不可能提出这些深刻的问题。尽管名家在逻辑上的辩论天下无敌手,但是遭到诸家反对。庄子说他们:“饰人之心,易人之意,能胜人之口,不能服人之心,辩者之囿也。”《荀子》也认为:“虽辩,君子不听。”这的确是名家的吊诡。
中国古有名辩逻辑,唐代传入印度因明,近代又引进了西方逻辑,成为世界三大逻辑的汇合点。黑格尔在《小逻辑》里说:“一说到诡辩我们总以为这只是一种歪曲正义和真理,从一种谬妄的观点去表述事物的思想方式。但这并不是诡辩的直接的倾向。诡辩派原来的观点不是别的,只是一种‘合理化论辩’的观点。”
这是针对古希腊人说的,对中国的名家来讲,同样适合。
4-4怎么翻译?英语里有一个Buchowski悖论:“MyoungerbrotherisolderthanIam。”单纯地看这句话是一个悖论,实际上这个“我”有两个哥哥。小哥哥(youngerbrother)自然比他的年龄大。但是youngerbrother在英语里又有“弟弟”的意思,硬译过来,如果是:“我弟弟的年龄比我大。”为常识错误;如果是:“我的小哥哥的年龄比我大。”构不成悖论。英语的brother与汉语里的“兄弟”并不完全对应。在这个例子里,汉语对“兄弟”作了进一步的划分,减少了歧意。
(五)由前提不自洽导致的悖论这里我们将看到,前提不自洽,结论就无法自圆其说,甚至荒谬或没有结论。
5-1“罗素是教皇”
从单纯的逻辑上来讲,荒谬的假设可以推论出任何荒谬的结论,哪怕推理过程无懈可击。有人曾经让罗素证明从“2+2=5”推出“罗素是教皇”。罗素证明如下:由于2+2=5,等式的两边同时减去2,得出2=3;两边同时再减去1,得出1=2;两边移位,得出2=1。
教皇与罗素是两个人,既然2=1,教皇和罗素就是1个人,所以“罗素就是教皇”。
这个荒谬的结论,就是由一个荒谬的假设引发出来的。
5-2“亚里斯多德是类概念”
这是严格按照三段论推导出来的结果。请看:(1)亚里斯多德是哲学家,(2)哲学家是类概念,(3)所以,亚里斯多德是类概念。亚里斯多德(Aristotle,公元前384-前322)是希腊大哲学家和天文学家,曾就学于柏拉图,继承苏格拉底以来的希腊哲学而自成体系,在西方的影响最大。他系统总结了三段论法原理,奠定了逻辑思维的基矗
上面这个结论恐怕连亚里斯多德本人也不会认同。因为其中蕴含了一个“语义悖论”。因为语句(1)中的哲学家和语句(2)中的“哲学家”不在一个层次上,前者是对象概念,后者是元概念。两个前提内涵不一致,结论就荒谬了。从根本上来讲这不是一个语言或语法问题,而是一种逻辑错误。自塔尔斯基在30年代提出“语言层次论”来,就一直受到人们的关注。
5-3自相矛盾这个例子正相反,是一个因为前提不相容而推不出结论的经典例子。
《韩非子。势难》介绍了这个预言:有一个同时卖矛和盾的人。他先夸他的盾最坚固,无论什么东西都戳不破;接着又夸他的矛最锐利,无论什么东西都能刺透。旁人问他:如果用他的矛来刺他的盾会有什么结果,他回答不上来,因为两者相互抵触。这是一个既不可以同时为真,也不可以同时为假的命题。前提出现矛盾,也就无法推出结论。
5-4纸牌悖论纸牌悖论就是纸牌的一面写着:“纸牌反面的句子是对的。”而另一面却写着:“纸牌反面的句子是错的。”这是由英国数学家Jourdain提出来的。
我们同样推不出结果来。它最简单的形式是:5-5“悖论元”
下面这句话是对的,上面这句话是错的。这也是一个有名的悖论,叫乔丹真值(JourdainTruth-Value)悖论。以上这三个例子基本属于一个类型。
5-6“先有鸡,还是先有蛋?”这个互为因果的循环推理本身无法自我解脱,需要实际的考证,如考古学和生物学的研究成果等,才能打破这一循环。
它里面也隐含着一个不相容的前提假设:“鸡是由蛋孵化出来的,蛋又是由鸡生出来的。”单独来看都符合日常观察,但合在一起却是一对不自洽的假设。
5-7“如果说上帝是万能的,他能否创造一块他举不起来的大石头?”这是一个流传很广的悖论。如果说能,上帝遇到一块“他举不起来的大石头”,说明他不是万能;如果说不能,同样说明他不是万能。这是用结论来责难前提。这个“全能者悖论”的另一种表达方法是:“全能的创造者可以创造出比他更了不起的事物吗?”
5-8“你会杀掉我”
这个故事有几个版本。大意是说:一夥强盗抓住了一个商人,强盗头目对商人说:“你说我会不会杀掉你,如果说对了,我就把你放了;如果说错了,我就杀掉你。”商人一想,说:“你会杀掉我。”于是强盗把他放了。
推理一下:如果强盗把商人杀了,他的话无疑是对的,应该放人;如果放人,商人的话就是错的,应该杀掉,又回到前面的推理,这是一个悖论。聪明的商人找到的答案使强盗的前提互不相容。
5-9“你会吃掉我的孩子”。这个例子与上面的例子逻辑同构。一条鳄鱼抢走了一个小孩,它对孩子的母亲说:“我会不会吃掉你的小孩?答对了,孩子还给你;答错了,我就吃了他。”我们已经知道了母亲的答案:“你会吃掉我的孩子。”
5-10两小儿辩日这是《列子》里的一则预言:孔子遇到两个小孩在争论,一个说:“日出时,太阳距离我们近,中午距离我们远。因为日出时太阳大得像车轮,中午小得像盘子。
这不正是近大远小吗?“另一个却说:”日出时,太阳距离我们远,中午距离我们近。因为日出时我们不觉得热,中午却非常热。这不是近热远凉吗?“孔子不能答。这是今天的一个科学常识问题,但两千多年前的人并不知道。从逻辑上看,这里有“近大远斜、“近热远凉”两个测度的标准。在回答问题以前,应该搞清楚哪个标准更准确,或者都不准确。
5-11爱瓦梯尔应不应该付学费?传说古希腊人爱瓦梯尔(Eulathlus)向普洛太哥拉斯学习辩术(另有一说是学习法律)。他们的约定是:爱瓦梯尔先付一半学费,另一半学费等学成后在第一场辩护胜诉时再付,如果败诉,则学费不必再交。但是爱瓦梯尔毕业以后,没有担任辩护工作,不打算交另一半学费。普洛太哥拉斯准备告他,说:“如果我胜诉了,法官会判你付我学费;如果我败诉,根据约定你还是要付我学费。总之要付。”。爱瓦梯尔则说:“如果我胜诉,法官也会判我不付学费;如果我败诉,按照约定我也不必付另一半的学费。总之不付。”(见王九逵《逻辑与数学思维》)
这个问题反过来看,逻辑上也同样成立。如果爱瓦梯尔先说:“如果你告我,我就可以不付学费了。”普洛太哥拉斯也可以用同样的方式来反驳。如此争论下去不可能有结果。这里的问题就是他们双方都默认“约定”和“判决”可以同时而且等效地来解决他们的纠纷,这是他们共同的前提。从逻辑上化解它们的办法就是选择其中的一个进行最终裁决。
5-12梵学者的“预言”。和上面的例子完全类似,这是一个梵学者(印度的预言家)的女儿用悖论来为难她的父亲的故事。女儿在纸上写了一行字压在水晶球的下面。然后对父亲说:纸上写的可能发生,也可能不发生。如果你预言会发生就写“是”,反之就写“不”。梵学者写下他的预言“是”,女儿拿出水晶球下面的纸,念到:“你将写一个‘不’字。”学者错了。实际上,他写个“不”字,也会错,因为预言已经发生了。女儿的“不”有两重含义,它一方面与字面上的“是”相反,另一方面与实际上的“不”相反,双重标准。由于没有事先界定,梵学者也可以反过来和他的女儿作无限的争论。
(六)由权变遭遇的悖论
6-1阿雷斯(Allais)悖论下面两个式代表你将获得的收入,X是一个不定的量,你将选择哪一个,S1还是S2?
(1)S1=0.9X+$100,000(2)S2=0.89X+$250,000显然,最好的选择取决于X是多少。
当X=$15,000,000,S1=S2=$13,600,000当X〉$15,000,000,S1〉S2当X〈$15,000,000,S1〈S2这个悖论对决策理论有较大影响。
6-2纽卡(Newcombs)悖论这也是决策理论中的一个。有两个盒子A和B放在桌子上:A是透明的,可以看见里面有$1,000,B是不透明的,上面写着或者是$1,000,000,或者是0。你可以在下面的两种选择中,只能取一个(1)或(2):(1)只选择B(2)A和B两个都选你会作出什么选择?
有一个教授曾经作过一个实验:他让1000个学生选,其中999个学生选择了(1),只有1个学生选择了(2)。而这999个学生一人只获得$1,000,而那1个学生却获得了$1,000,000。为什么呢?因为这个教授事先已经作了预测,并作出这样的安排:如果选(2)B盒子里就不放任何一分钱,如果选择(1)B盒子里就放$1,000,000。
而这个教授的预测只有千分之一的失误。如果你已经知道了这个结果,重新再选,会选哪一项。注意,这一回,教授可能又作出了新的预测。
6-3谷“堆”的定义如果1粒谷子落地不能形成谷堆,2粒谷子落地不能形成谷堆,3粒谷子落地也不能形成谷堆,依此类推,无论多少粒谷子落地都不能形成谷堆。从真实的前提出发,用可以接受的推理,但结论则是明显错误的。它说明定义“堆”缺少明确的边界。它不同于三段论式的多前提推理,在一个前提的连续积累中形成悖论。从没有堆到有堆中间没有一个明确的界限,解决它的办法就是引进一个模糊的“类”。
这是连锁(Sorites)悖论中的一个例子,归功于古希腊人Eubulides,后来的怀疑论者不承认它是知识。“soros”在希腊语里就是“堆”的意思。最初是一个游戏:你可以把1粒谷子说成是堆吗?不能;你可以把2粒谷子说成是堆吗?不能;你可以把3粒谷子说成是堆吗?不能。但是你迟早会承认一个谷堆的存在,你从哪里区分他们?
它的逻辑结构:1粒谷子不是堆,如果1粒谷子不是堆,那么,2粒谷子也不是堆;如果2粒谷子不是堆,那么,3粒谷子也不是堆;——-如果99999粒谷子不是堆,那么,10000粒谷子也不是堆;因此,100000粒谷子不是堆。
按照这个结构,无堆与有堆、贫与富、小与大、少与多都曾是古希腊人争论的话题(见《不列颠百科全书》)。
6-4秃头的定义这也是连锁悖论中的一例,和上面的游戏完全一样。最早叫Falakros谜:你可以把只有1根头发的叫秃头吗?能;你可以把只有2根头发的叫秃头吗?能;你可以把只有3根头发的叫秃头吗?也能。但是你不会把有一万根头发的人叫秃头。你从哪里区分他们?
6-4“一整袋谷子落地没有响声”
在古希腊,还流传着这样一个故事:如果1粒谷子落地没有响声,2粒谷子、3粒谷子落地也没有响声,类推下去,1整袋谷子落地也不会有响声。响声是由振动引起的,1粒谷子落地可能引起的振动太小,人耳听不到,但是用仪器却可以测得出来。而一袋谷子落地引起的振动大,人耳自然就可以听得到了。应该注意,古希腊辩论家的用意不在于此,他们并不是真的要探讨事实,而是试图找到逻辑演绎与事实的差别。如果承认谷子落地从没有响声到有响声是一个系列,那么其间也会有一个变化的模糊区域。
6-5预料之外的绞刑时间这个悖论在英语里叫“Paradoxofthe Unexpected Hanging”;最早从口头传开是在本世纪四十年代。一个囚犯在星期六被判刑。法官宣布:“绞刑时间将在下一周七天中的某一天中午进行,但是具体哪一天行刑将在这一天的上午再通知你。”囚犯分析道:“我将不可能在下个星期六赴刑,这是最后一天。因为星期五下午我还活着,那么我知道星期六中午我一定被处死。但是,但是这和法官的判决有矛盾。”根据同样的推理,他认为下一个星期五、星期四、星期三、星期二、星期一、星期日。因此,法官的判决将无法执行。这种连锁悖论式的推理并不难理解,法官的判决可以在下个星期六以外的任何一天被执行,囚犯的预期落空。还有一个“预料之外的考试时间悖论”和这个悖论的结构完全一致。
6-6“卵有毛”
惠施曾经与一个辩者辩论过这个题目。辩者说鸡蛋里面有毛,惠施却反对。辩者说:“如果鸡蛋里没毛,那么孵出来的小鸡怎么身上有毛?”惠施说:“鸡蛋里只有蛋清和蛋黄,没有毛。你什么时候看见过鸡蛋里面有毛了?小鸡身上的毛是小鸡身上的毛,不是鸡蛋里的毛。”但是辩者不能接受。辩论双方都以“眼见为实”做标准,从而忽视了从没有毛到有毛的转化过程。
不知道生物学对此会作出什么解释,从方法上来讲,他们没有界定毛从无到有的界限,似乎都不接受“小鸡身上的毛也可能是鸡蛋里的毛”的模糊区域。
6-7宝塔从有到无这是哲学中从量变到质变的一个例子。一个宝塔,如果从下面抽走它的砖,一块一块地抽,这是量变。当到达一定的度时,宝塔倒塌了,发生了质变,说明宝塔没有了。我们可以看到一准确的“度”。但是现在从上面拿走它的砖,一块一块地抽,这也是量变。直到拿完,宝塔不存在了,发生了质变,但我们就不容易找到从量变到质变中间的一个准确的“度”了。
6-8孪生子佯谬这是一个与相对论有关的悖论(TwinParadox)。
爱因斯坦的成就之一,就是引进了一个定律,用C表示恒定的真空光速,把它纳入自然常数之列,作为不可达到的最高临界速度。根据光速恒定,引出了相对论的两个著名的“佯谬”,它们曾经被人嘲讽为相对论的“荒诞无稽”的结论。
“孪生兄弟佯谬”是指以快速运动为参考系的钟,比静止参考系中的钟走得慢。根据这一结论,我们可以得出这样的一个结果:一个乘飞船按接近光速的速度在太空旅行的人,当他返回地球的时候,就会比生活在地球上的孪生兄弟年轻。因为他的生物钟,比留在地球上的人要慢。尽管目前的宇宙飞船还远远达不到接近光速的速度。
在1905年,爱因斯坦的狭义相对论确立以前,牛顿定律是速度远远小于光速条件下的定律,机械自然观统驭着人们的空间想象,因此无法解释这一现象。爱因斯坦关于时间相对论化的概念是崭新的,它取缔了牛顿“绝对时间”的概念,使“绝对运动”概念也失去了立足之地。
6-9“会变的尺”
这是相对论引出的另一个“佯谬”:一把快速运动着的尺子,它和静止状态相比,在运动方向上长度缩短。这个问题是从迈刻尔逊实验结果提出来的,后来形成了洛仑兹的机械收缩假说。爱因斯坦认为,这种收缩可以用两个参考系之间存在着的相对速度来解释(见聂运伟编著的《相对论的摇篮:爱因斯坦传》)。
6-10夜空为什么是暗的?这是有名的奥伯斯(Olbers,HeinrichWillhelm)悖论:如果空间无限延展,而且星体均匀分布,我们的任何视线都应该碰到起码一颗星球。那么,天空不是应该一直都是明亮的吗?这个结论显然与事实不符。这个问题早在1610年开普勒就注意到,直到1823年德国天文学家奥伯斯重新提出以后才广泛引起关注。过去有很多的猜测,如宇宙只有有限的星体、星体的分布不是均匀的、星体越远可视光越少,遥远的光还没有到达地球等等。“大爆炸”理论出现以后,宇宙的年龄不是无限的,被人为是一个最重要的原因。从“大爆炸”开始算起,宇宙距今有一百到两百亿年的历史。年轻的宇宙还没有时间将光充满夜空(《星期日电讯》1997年10月5日)。
本文所记都是流传很广的常见悖论。随着现代数学、逻辑学、物理学和天文学的快速发展,又有不少新的悖论大量涌现,人们在孜孜不倦地探索,预计他们的成果将极大地改变我们的思维观念。本文罗列的悖论解释多为一管之见,错误难免,希望读者批评指正。