现在的位置: 首页 > 自动控制 > 工业·编程 > 正文

数组中求第K大数

2012-08-23 23:38 工业·编程 ⁄ 共 1708字 ⁄ 字号 暂无评论

问题:有一个大小为n的数组A[0,1,2,…,n-1],求其中第k大的数。

该问题是一个经典的问题,在《算法导论》中被作为单独的一节提出,而且其解决方法很好的利用了分治的思想,将时间复杂度控制在了O(n),这多少出乎我们的意料,此处暂且不表。

该问题还可以变形为:有一个大小为 n的数组A[0,1,2,…,n-1],求其中前k大的数。

一字之差,原问题是“第k大”,变形的问题是“前k大”,但是平均时间复杂度却都可以控制在O(n),这不由得让人暗暗称奇。

我们先分析原问题:有一个大小为 n的数组A[0,1,2,…,n-1],求其中第k大的数。

我们先取特例,令k=1,那么就是取最大的数,只要扫描一遍数组就可以确定该值,如果k=2,则扫描两边数组就可以确定第二大的数,依此类推下去,时间复杂度是O(k*n),如果k跟n是一个数量级,那么时间复杂度就是O(n*n)了,显然不是最优的解法。

考虑分治法,难点在于如何将该问题分解为两个子问题。

快速排序最基础的一步:

       随机取某一个数x,将其与数组末尾元素交换,然后将比其小的数交换至前,比其大的数交换至后。

这一步使某一数组的快速排序问题分解成两个子数组的排序问题,现在我们就依此来解决取第k大的数这个问题。

设数组下表从0开始,至n-1结束。

1、 随机取某个数,将其与数组末尾元素交换。

a)        idx=rand(0,n-1);生成[0,n-1]间的随机数。

b)        Swap(array[idx], array[n-1]);

2、 用末尾元素x,将比x小的数交换至前,比x大的数交换至后,并返回此时x在数组中的位置mid。

3、 如果mid==n-k,那么返回该值,这就是第k大的数。

如果mid>n-k,那么第k大的数在左半数组,且在左半数组中是第k-(n-mid)大的数。

如果mid<n-k,那么第k大的数在右半数组,而且仍然是第k的数。

源码

#include "iostream"
using namespace std;

int random_partion(int *p, int n)
{
     int idx=rand()%n;
     swap(p[idx], p[n-1]);
     int i=-1;    //i表示最后一个小于p[n-1]的元素的位置
     int j=0;     //j用来扫描数组
     for(j=0; j<n; j++)
     {
            //将小于p[n-1]的数交换到前半部分
            if(p[j]<p[n-1])
            {
                swap(p[++i], p[j]);
            }
     }
     swap(p[++i], p[n-1]);
     return i;
}

int getMaxK(int *p, int n, int k)
{
    int mid;
     if(k<=0)
            return -1;
     if(n<k)
            return -1;
     mid=random_partion(p, n);   //对原数组进行一次划分
     if(mid == n-k)      //如果mid==n-k,那么返回该值,这就是第k大的数
         return p[mid];
     else if(mid<n-k)
         return getMaxK(p+mid+1, n-mid-1, k);  //如果mid<n-k,那么第k大的数在右半数组,而且仍然是第k大数
     else
         return getMaxK(p, mid, k-(n-mid));   //如果mid>n-k,那么第k大的数在左半数组,且在左半数组中是第k-(n-mid)大的数
}

int main(void)
{
    int num,a[] = {12012, 3, 945, 965, 66, 232, 65, 7, 8, 898, 56, 878, 170, 13, 5};
    num=getMaxK(a, 15, 4);
    printf("%d\n",num);
    system("pause");
    return 0;
}

给我留言

留言无头像?